Рус Eng Cn Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Историческая информатика
Правильная ссылка на статью:

Задачи оптимизации расположения элементов интерфейса в виртуальной реальности (в контексте создания виртуальной реконструкции исторического рельефа Белого города)

Лемак Степан Степанович

доктор физико-математических наук

профессор кафедры прикладной механики и управления, Федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный университет имени М. В. Ломоносова».

119991, Россия, Москва область, г. Москва, ул. Ленинские Горы Д, 1

Lemak Stepan

Doctor of Physics and Mathematics

Professor, Applied Mechanics and Operation Department, Lomonosov Moscow State University 

119991, Russia, Moscow oblast', g. Moscow, ul. Leninskie Gory D, 1

lemaks2004@mail.ru
Чертополохов Виктор Александрович

научный сотрудник, кафедра прикладной механики и управления, механико-математический факультет, Московский государственный университет имени М.В.Ломоносова

119991, Россия, г. Москва, ул. Гсп-1 ленинские горы, 1, механико-математический факультет

Chertopolokhov Viktor

Researcher, Department of Applied Mechanics and Management, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University  

119991, Russia, g. Moscow, ul. Gsp-1 leninskie gory, 1, mekhaniko-matematicheskii fakul'tet

psvr.msu@gmail.com
Другие публикации этого автора
 

 
Кручинина Анна Павловна

кандидат физико-математических наук

ассистент кафедры прикладной механики и управления, Федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный университет имени М. В. Ломоносова».

119991, Россия, Москва область, г. Москва, ул. Ленинские Горы, 1

Kruchinina Anna

PhD in Physics and Mathematics

Assistant, Applied Mechanics and Operation Department, Lomonosov Moscow State University

119991, Russia, Moscow oblast', g. Moscow, ul. Leninskie Gory, 1

a.kruch@moids.ru
Белоусова Маргарита Дмитриевна

мл. научный сотрудник, кафедра прикладной механики и управления, механико-математический факультет, Московский государственный университет имени М.В.Ломоносова (МГУ)

119991, Россия, г. Москва, ул. Гсп-1, ленинские горы, 1, оф. механико-математический факультет

Belousova Margarita

Junior research worker, Department of Applied Mechanics and Management, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University  

119991, Russia, g. Moscow, ul. Gsp-1, leninskie gory, 1, of. mekhaniko-matematicheskii fakul'tet

bmargaretd@yandex.ru
Другие публикации этого автора
 

 
Бородкин Леонид Иосифович

доктор исторических наук

член-корреспондент РАН, профессор, заведующий кафедрой исторической информатики, исторический факультет, Московский государственный университет имени М.В.Ломоносова (МГУ)

119991, Россия, г. Москва, ул. Гсп-1, ломоносовский проспект, 27 к.4, исторический факультет

Borodkin Leonid

Doctor of History

Professor, the head of Historical Information Science Department, Faculty of History, Lomonosov Moscow State University,  corresponding member of the Russian Academy of Sciences 

119991, Russia, g. Moscow, ul. Gsp-1, lomonosovskii prospekt, 27 k.4, istoricheskii fakul'tet

borodkin-izh@mail.ru
Другие публикации этого автора
 

 
Мироненко Максим Сергеевич

специалист по УМР, кафедра исторической информатики, исторический факультет, межфакультетский научно-образовательный центр Математическое и программное обеспечение технологий виртуальной и смешанной реальности. Московский государственный университет имени М.В.Ломоносова (МГУ)

119991, Россия, Москва область, г. Москва, ул. Гсп-1, ломоносовский проспект, 27 к.4, оф. исторический факультет, Межфакультетский научно-образовательный центр Математическое и программное обеспечение технологий виртуальной и смешанной реальности

Mironenko Maxim

Learning support specialist, Historical Information Science Department, History Faculty, interfaculty scientific and educational center Mathematical and software support for virtual and mixed reality technologies. Lomonosov Moscow State University 

119991, Russia, Moskva oblast', g. Moscow, ul. Gsp-1, lomonosovskii prospekt, 27 k.4, of. istoricheskii fakul'tet

mm@vrmsu.ru
Другие публикации этого автора
 

 

DOI:

10.7256/2585-7797.2020.1.32205

Дата направления статьи в редакцию:

17-02-2020


Дата публикации:

11-04-2020


Аннотация: Статья описывает постановку задачи оптимизации расположения элементов трехмерного пользовательского интерфейса для виртуальной реконструкции рельефа исторического центра Москвы XVI-XVIII веков. Для работы с интерфейсом были интегрированы шлем виртуальной реальности, система отслеживания движений человека и окулографический комплекс. Пространственное представление исторической реконструкции сопровождается специализированным интерфейсом, позволяющим получить доступ к базе источников. Представлен критерий, который позволит говорить об оптимальности расположения элементов интерфейса в виртуальном пространстве. Задача рассматривается при наличии неизвестных заранее факторов, таких как размеры рук пользователя, отклонения положения интерактивного объекта, ограничения на размещение элементов интерфейса. В статье приведена постановка общей задачи и решены несколько внутренних задач, связанных с построением множества допустимых положений элементов интерфейса и оценкой движения взора от одного элемента интерфейса к другому. В статье впервые предложен алгоритм численной оптимизации интерфейса в трехмерном виртуальном пространстве, моделирующем рельеф и историческую застройку территории центра Москвы, с обеспечением перемещения пользователя допускающим доступ к историческим источникам, на основе которых проведена виртуальная реконструкция изучаемых объектов историко-культурного наследия.


Ключевые слова:

Виртуальная реальность, Смешанная реальность, Историческая виртуальная реконструкция, Исторический городской ландшафт, Белый Город, Отслеживание движений, Виртуальный интерфейс, Множество достижимости, Теория игр, Окулография

Исследование проводится при поддержке гранта РФФИ 18-00-01684 (K) (18-00-01590 и 18-00-01641).

Abstract: The article sets a problem focusing on how to optimize the order of 3D user interface for virtual reconstruction of Moscow historical center landscape in the 16th-18th centuries. To work with the interface a virtual reality headset, a motion tracking system and an eye-tracker were integrated. Spatial representation of the historical reconstruction is accompanied by a specialized interface that allows one to access the source database. The authors introduce a criterion that provides for estimating the optimum order of interface elements in the virtual space. The problem is handled in case there are unknown factors such as the size of user's hands, deviations in the position of an interactive object and restrictions related to the disposition of interface elements. The article sets the general problem and solves some internal problems related to the construction of acceptable multiple dispositions of interface elements and the modeling of eyesight movement from one interface element to another. The article is the first to suggest an algorithm to numerically optimize the interface in 3D virtual space modeling the relief and historical buildings in the center of Moscow. It provides for user’s movement and gives access to historical sources which are the basis for virtual reconstruction of the heritage understudy.


Keywords:

Virtual reality, Mixed reality, Historical virtual reconstruction, Historical city landscape, Belyi Gorod, Motion tracking, Virtual interface, Reachability set, Game theory, Oculography

Виртуальная реконструкция объектов историко-культурного наследия, основанная на технологиях 3D моделирования, активно развивается в течение последнего десятилетия. В центре внимания создателей научных виртуальных реконструкций объектов, утраченных полностью или частично, находятся источниковедческие вопросы, решение которых должно обеспечить достаточную степень достоверности создаваемых 3D моделей [1]. В связи со стремительным развитием технологий виртуальной и дополненной реальности (VR/AR) такие разработки могут теперь включать новую компоненту, целью которой является, с одной стороны, расширение познавательных возможностей пользователя виртуальной реконструкции за счет иммерсионных эффектов VR; с другой стороны, использование VR/AR технологий повышает мотивацию при изучении истории культуры и смежных дисциплин. Эти технологии позволяют «погрузить» обучаемого в виртуальную среду, которая воспринимается им через органы чувств. Одна из первых разработок такого рода была осуществлена в рамках исследовательского проекта по виртуальной реконструкции Страстного монастыря [2].

Реализация технологии виртуальной реальности включает следующие основные шаги [3, с.89]: компьютер создает образ (трехмерное изображение объектов в виртуальной среде); программная система отображения транслирует его на органы чувств пользователя; установленные на теле пользователя датчики передают компьютеру информацию о действиях/движениях пользователя (например, о повороте головы, движениях рук или изменении его положения в пространстве); компьютер использует эту информацию для изменения генерируемой им виртуальной реальности и ее образа, который передается на органы чувств пользователя. Используемое VR-оборудование (гарнитуры) позволяет пользователю взаимодействовать с виртуальной реальностью, погружаться в нее, совершать передвижения, видеть и слышать виртуальный мир [3, с.90].

* * *

В лаборатории математического обеспечения имитационных динамических систем (МОИДС) Московского государственный университета им. М.В. Ломоносова создано аппаратное и программное обеспечение для применения технологии виртуальной реальности при тестировании и моделировании интерактивных виртуальных исторических реконструкций. Реалистичный пользовательский опыт был достигнут с использованием глубокой обратной связи, которая активирует большое количество биологических сенсоров человека, включая зрение.

Для достижения реалистичной визуализации в лаборатории был разработан комплекс на основе шлема виртуальной реальности высокого разрешения (HMD).

Вход системы визуализации дает информацию о состоянии математической модели пользователя и окружающих его объектов виртуального мира, что позволяет моделировать взаимодействие в режиме реального времени. Одной из характеристик HMD является полное покрытие поля зрения пользователя и замена реальной среды виртуальной моделью. Применяется система отслеживания движения для передачи движения реального человека в виртуальное пространство [4]. Подобный подход был назван «смешанной реальностью».

Система смешанной реальности представляет собой программно-аппаратный комплекс, выполняющий функцию визуализации ближайшего окружения для пользователя с возможностью отслеживания движений человека и передачи этих движений в виртуальное пространство. Технология создает иллюзию абсолютного физического присутствия человека в виртуальном пространстве.

Задача, которая рассматривается в данной статье, была поставлена в ходе исследований по созданию виртуальных реконструкций, проводимых сотрудниками кафедры исторической информатики исторического факультета МГУ. В рамках совместного проекта кафедры и лаборатории МОИДС создается виртуальная реконструкция исторического ландшафта и ряда доминантных объектов исторической застройки Белого города (территории в центре Москвы) XVI-XVIII веков [5]. Реконструкция будет представлена в формате виртуальной реальности. Одна из основных задач – в ходе перемещений пользователя в виртуальной среде обеспечить ему доступ не только к самой реконструкции, но и к источниковой базе, на основе которой создается эта реконструкция. Для ее верификации используется виртуальный пространственный интерфейс.

Размер, детализация и масштаб являются основными опциями для правильного иммерсионного представления данных в среде виртуальной реальности. При использовании комплекса смешанной реальности для верификации виртуальной реконструкции, важным аспектом становится взаимодействие с элементами виртуального интерфейса, что потребовало разработки новых методов и адаптации алгоритмов отслеживания и визуализации движений человека.

Отслеживание движения человека должно выполняться с частотой не менее 60 Гц. Ультразвуковые и радиосистемы отслеживания движения не могут обеспечить необходимую частоту для более чем одного датчика, а магнитные работают некорректно при наличии стороннего оборудования. В рамках нашего проекта используется комбинация оптических и инерциальных датчиков. Существующие оптические системы отслеживания движения имеют требуемую частоту, но они чувствительны к перекрытию оптических маркеров - в эти моменты данные от оптических систем отсутствуют или неверны. Инерциальные системы не подвержены перекрытию, однако имеют низкую точность при отслеживании линейного перемещения с ошибками, накопленными с течением времени. Разработка гибридной системы слежения как комбинации оптических и инерциальных данных дала возможность получить решение без указанных проблем [6].

Постановка задачи численной оптимизации интерфейса

Точное отслеживание движений дает возможность пользователю свободно взаимодействовать с виртуальным интерфейсом. Каждый объект виртуальной реконструкции снабжен исторической справкой и интерактивными элементами, позволяющими открыть меню, изменить состояние объекта или получить доступ к соответствующему историческому источнику, используемому для верификации. Задача может быть условно разделена на две задачи: расположение элементов информационного интерфейса и расположение интерактивных элементов.

Несмотря на некоторое различие между информацией и интерактивными элементами, данная статья предлагает общий подход к поиску эффективной позиции для них обоих.

Расположение элементов интерфейса в трехмерном пространстве не предполагает эмпирического подхода к задаче, в отличие от двумерного интерфейса на экране компьютера, где может применяться закон Фиттса [7]. Это вызвано новыми возможностями виртуальной реальности для размещения элементов в пространстве без какой-либо привязки к физическим объектам.

Например, если мы рассмотрим куб размером 0,5 метра в качестве допустимого пространства для размещения интерактивных элементов, точность позиционирования в виртуальной реальности составляет 1 см, мы получим около 1010 экспериментов для двух элементов интерфейса без учета возможных различий в параметрах человека. В то же время высота и длина руки пользователя больше всего влияют на удобство использования виртуального интерфейса. Точно так же различные трехмерные модели в сцене, которые могут перегородить обзор, усложняют задачу визуального отслеживания.

При работе с малым количеством элементов интерфейса бывает достаточно использовать интерфейсную плоскость. Такой подход был применен в интерфейсе реконструкции Страстного монастыря (рис. 1).

ris1Рис. 1. Виртуальный интерфейс

Увеличение количества объектов, отображаемых одновременно, показало недостатки этого метода: интерфейс либо оказывался не привязанным к соответствующим объектам, либо перекрывал обзор.

В данной работе представлен новый подход, который учитывает все мешающие факторы и позволит генерировать зону приоритетного расположения элементов интерфейса в трехмерном пространстве.

Для простоты элемент интерфейса будет рассматриваться как точка (множество допустимых положений элементов интерфейса считаем замкнутым).

Предположим, что существует динамическая система, которая описывает движение глаза или руки (примеры системы будут приведены далее):

(1)

где — вектор возмущенных параметров системы.

В паре элементов интерфейса первый элемент будет начальными условиями, а второй - конечными условиями. Время целенаправленного движения от первого элемента ко второму мы будем рассматривать как функционал качества:

(2)

где — время движения, определенное экспериментом или оптимальным по времени решением задачи.

Зададим задачу оптимизации позиций элементов интерфейса ( предопределено):

(3)

Очевидно, что тривиальное минимальное решение задачи заключается в расположении элементов интерфейса в одной точке. Однако в приложениях необходимо поддерживать некоторое расстояние между элементами интерфейса, чтобы дать возможность пользователю сознательно выбирать между ними. Кроме того, виртуальная среда накладывает некоторые ограничения, поскольку элементы интерфейса должны быть расположены вне трехмерных объектов.

Опишем наложенные ограничения следующим образом:

(4)

где - множество ограничений на позиции элементов интерфейса.

В реальной задаче может быть более двух элементов интерфейса, и вероятности перехода могут отличаться попарно. Определим эти вероятности как коэффициенты веса каждого перехода (от до ) за все время работы.

Для виртуальных интерфейсов можно искать оптимальное время перехода для каждой пары независимо от других переходов и ограничений, накладываемых на расположение других элементов.

В результате, если предопределено, для элементов интерфейса мы получаем задачу минимизации взвешенной суммы. Стоит отметить, что последовательность перехода не является фиксированной.

(5)

Здесь — все возможные местоположения элементов интерфейса, между которыми происходит переход.

Как указано выше, задача будет решена для информационных и интерактивных интерфейсов. Тем не менее, интерактивные элементы могут функционировать как информационные, но это выходит за рамки нашей работы, содержащей основные результаты, которые станут основой для решения всей задачи. Для информационных элементов мы рассмотрели бинокулярную модель движения глаз, и задача оптимального перехода была решена и подтверждена экспериментально. Для интерактивных элементов мы создали набор достижимости рук человека и провели серию экспериментов, которые необходимы для определения параметров модели руки.

Предложенные алгоритмы и соответствующий математический аппарат даются в Приложении.

* * *

В заключение отметим, что предложенный в данной работе алгоритм оптимизации пространственного интерфейса виртуальной реальности предназначен для организации передвижений пользователя в виртуальной среде, обеспечения интерактивного взаимодействия с элементами воссозданной исторической виртуальной реконструкции.

Применение предложенного подхода в исследовании эволюции ландшафта Белого города XVI — XVIII вв. позволяет существенно упростить задачи расположения элементов интерфейса в пространстве исторической виртуальной реконструкции рассматриваемой территории центра Москвы. Тем самым достигается расширение познавательных возможностей пользователя виртуальной реконструкции за счет иммерсионных эффектов, которые создают новейшие технологии VR.

ПРИЛОЖЕНИЕ

Анализ движения глаз человека

Стерео контент, воспроизводимый в системе виртуальной реальности, отличается тем, что рабочая область не ограничена плоскостью изображения и экраном. Когда появляется пространственная задача, необходимо учитывать бинокулярное зрение.

Когда мы смотрим на элемент данных интерфейса, наши глаза делают сходящиеся (конвергентные) движения, чтобы сфокусироваться на объекте. Отдельно стоит отметить работу со сложными сценами, такими как исторический ландшафт с набором зданий и элементов интерфейса. Возможная «перегруженность» виртуальной сцены приведет к длительному решению пользователем задачи поиска нужного элемента. По этой причине исследование движений глаз представляет интерес и для оптимизации интерфейса, и для оценки полученного результата.

Математическая модель движения глаз обычно учитывает только один глаз. Применение этой модели для скоординированных движений обоих глаз увеличивает порядок задач.

Перенос взгляда с одного элемента интерфейса на другой всегда осуществляется саккадой - быстрым скоординированным движением глаз. Здесь мы рассматриваем целенаправленное движение пары глаз как оптимальное по времени решение задачи.

Возьмем динамическую модель, основанную на мышечной модели Фельдмана [8], чтобы моделировать каждый глаз пары:

(6)

где — коэффициент вязкости глаза по среде, — коэффициент эластичности мышц, — длина мышцы, — угол поворота глаза, — радиус глаза. В рамках модели принято, что только одна пара глазодвигательных мышц (ГДМ) действует на вращение глаза в горизонтальной, фронтальной и сагиттальной плоскостях. Обе мышцы имеют одинаковые пружинные и вязкие коэффициенты и различную свободную длину λ. Для простоты рассмотрим движение глаза в горизонтальной плоскости. Предположим, что каждый глаз совершает только вращательное движение вокруг своего геометрического центра.

Крутящий момент глазных мышц не может измениться мгновенно. Мы можем формализовать этот факт с помощью следующего уравнения:

(7)

где — крутящий момент, создаваемый парой ГДМ, управление — скорость изменения крутящего момента ГДМ. Начальные и конечные условия крутящего момента ГДМ рассчитываются для каждой начальной и конечной позиции глаза. Очевидно, что систему (6) и (7) можно представить в виде (1).

Движение глаз моделируется путем решения оптимальной по времени задачи при переходе от начальных условий к некоторым конечным. Для решения задачи переноса взгляда двух глаз с цели на цель было использовано решение из [9].

Результаты математического моделирования были сопоставлены с экспериментальными данными. Было проанализировано движение глаз, записанное с помощью высокоскоростной окулографической системы SMI Hi-Speed 1250 с частотой 500 Гц, регистрирующей движение двух глаз. Система представляет собой рамку с лбом и держателем для подбородка, на которой закреплена высокоскоростная камера и отражающее стекло, ЖК-экран для создания визуального стимула и персональный компьютер с установленным на нем программным обеспечением для проведения экспериментов и обработки записей.

Данные представлены в исследовании [10]. В эксперименте приняли участие 9 человек в возрасте от 18 до 22 лет с нормальной остротой зрения, без очков или линз; не выявлены заболевания нервной системы и расстройства органов внутреннего уха. Участники исследования сидели неподвижно и наблюдали за движением цели по экрану (стимулы). Серия для одного человека состояла из 84 стимулов. Цель двигалась из точки в точку на сетке размером 7 x 9.

Стимулы были представлены один за другим. Цель выглядела как белый круг на черном фоне. В центре белого круга в части раздражителей отображалась точка в 1 пиксель красного, синего или зеленого цветов. Человека попросили подсчитать количество точек определенного цвета. Было необходимо не только увидеть появившуюся цель, но и точно посмотреть на нее.

Полученные результаты сравнения модельных данных с реальными показали возможность применения описанной модели для исходной задачи работы с интерфейсом. Возмущения начальных условий, предложенные в [10], могут рассматриваться как тестирующие.

Множество ограничений на расположение интерактивных элементов интерфейса

Для описания целенаправленных движений глаз и рук обычно решаются оптимальные по времени задачи. Обе задачи довольно близки, но ограничения для интерактивных элементов более сложны. Было построено много возможных позиций рук, описывающих набор ограничений (4) для элементов интерактивного интерфейса.

Параметры кисти и модель движения руки записываются в предположении, что плечо зафиксировано. Фиксированная система координат вводится с началом в центре вращения в плечевом суставе, ось направлена вперед от человека, ось направлена влево, ось направлена вертикально вверх.

ris2Рис. 2. Модель руки

Рука моделируется трехзвенным механизмом (рис. 2). Звенья связаны цилиндрическими соединениями. Ось плечевого сустава фиксирована. В качестве обобщенных координат принимаются следующие: угол между прямым направлением и звеном , углы между звеньями и горизонталью соответственно . Также используются следующие обозначения: длина ссылок , массы , центральные моменты инерции . Введем коэффициенты, которые определяют относительное положение центра масс звена на его продольной оси, , определяемое из равенств:

,

где — расстояние от го сустава до центра масс.

Были использованы данные из работы [11] для построения набора достижимости для ручных ссылок. В таблице ниже перечислены ограничения для допустимых углов при вращении вокруг разных осей для большинства людей.

На рис. 3 показаны измеренные углы и их центральные точки. Следует отметить, что на каждой фигуре есть позиции А и В. В таблице показаны не все эти позиции, например, угол B указан для горизонтального похищения, поскольку сумма углов A и B равна 180 °. Также сумма углов сгибания / разгибания предплечья составляет 180 °.

Введем угол как угол вертикального сгибания плеча, как угол горизонтального сгибания / разгибания, длина плеча — . Угол соответствует вертикальному углу сгибания предплечья, — латерально-медиальному углу сгибания, длина предплечья — .

Тогда координаты кисти руки будут выражаться следующим образом:

(8)

На рис. 3 показан пример формы множества достижимости для руки (предплечье движется, плечо фиксировано).

ris3

Рис. 3. Множество достижимости для руки (предплечье движется, плечо фиксировано)

Система (8) показывает, как мы можем вычислить множество допустимых положений объекта интерфейса (4), когда определены параметры руки (, ). Мы должны пересчитать его для каждого .

Задача оптимизации интерфейса при наличии возмущений

В первой части этой статьи была поставлена задача оптимизации расположения элементов интерфейса с определенными параметрами системы (1).

Для каждого объекта в виртуальной сцене сам объект является статическим, но параметры человека (пользователя) могут значительно отличаться от первоначально выбранных.

Можно использовать алгоритм идентификации параметров в режиме реального времени и решить задачу оптимизации интерфейса для каждого пользователя, рассмотренного в первой части статьи. Однако это можно сделать только для небольшого числа элементов интерфейса и со значительными ограничениями их взаимного расположения.

Задача оптимального размещения элементов интерфейса усложняется, если невозможно провести идентификацию, поскольку необходимо учитывать наихудшие возможные параметры.

Альтернативный подход – использовать теорию игр [12]. Действительно, пусть длины звеньев, массы и т. д. будут возмущениями. Мы будем рассматривать относительное положение элементов интерфейса в качестве управления. Как и ранее, функционал - взвешенная сумма времен перехода между элементами интерфейса.

Если игрок, ответственный за возмущения, пытается максимизировать функционал, а игрок, ответственный за управление, минимизирует, то мы получаем антагонистическую игру Γ.

Мы будем рассматривать минимум управлений от максимума возмущений от как оценку качества интерфейса:

(9)

Чтобы найти оптимальное решение, можно использовать методы динамического программирования [13]. Из-за большого количества переменных проблема является масштабной и требует большого объема вычислений и ресурсов памяти.

Библиография
1. Бородкин Л. И. Страстной монастырь в XVII-XX вв.: пространственная эволюция и виртуальная реконструкция // Российская история — 2016. — № 5. — С. 149–160
2. Бородкин Л.И., Мироненко М.С., Чертополохов В.А., Белоусова М.Д., Хлопиков В.В. — Технологии виртуальной и дополненной реальности (VR/AR) в задачах реконструкции исторической городской застройки (на примере московского Страстного монастыря) // Историческая информатика. – 2018. – № 3. – С. 76 - 88. DOI: 10.7256/2585-7797.2018.3.27549 URL: https://nbpublish.com/library_read_article.php?id=27549
3. Уваров А.Ю. Образование в мире цифровых технологий: на пути к цифровой трансформации Изд. дом ГУ-ВШЭ, М.: 2018. — 168 с.
4. Бугров Д. И., Лебедев А. В., Чертополохов В. А. Оценка угловой скорости вращения тела при помощи системы трекинга // Вестник Московского университета. Серия 1: Математика. Механика. — 2014. — № 1. — С. 68–71.
5. Бородкин Л. И. Цифровые технологии в задачах виртуальной реконструкции исторического городского ландшафта // Вестник Пермского университета. Серия "История". — 2019. — № 3. — С. 109–117.
6. Кручинина А. П., Латонов В. В., Чертополохов В. А. Обзор технологий визуальной имитации в тренажерных системах // Пилотируемые полеты в космос. — 2019. — № 3. — С. 89–107.
7. Fitts, Paul M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology. 47 (6): 381-391.
8. Feldman, A.G. (1986). Journal of Motor Behavior, 18:17-54.
9. Kruchinina, A. P. & Yakushev, A. G. (2018). A mathematical model of optimal saccadic eye movement by a pair of muscles. Biophysics. 63 (2): 241-247.
10. Kruchinina, A.P. & Yakushev, A.G. (2019). Statistical study of the single saccade eye movement forms. Journal of Mathematical Sciences. 22 (2).
11. NASA. (July, 1995). Man-Systems Integration Standards, Revision B.
12. Bellman, R. (1957). Functional Equations in the theory of dynamic programming. Ann. Math., 65.
13. Лемак С. С. К вопросу о формировании позиционных стратегий дифференциальной игры в методе экстремального прицеливания Н.Н. Красовского // Вестник Московского университета. Серия 1: Математика. Механика. — 2015. — № 6. — С. 61–65.
References
1. Borodkin L. I. Strastnoi monastyr' v XVII-XX vv.: prostranstvennaya evolyutsiya i virtual'naya rekonstruktsiya // Rossiiskaya istoriya — 2016. — № 5. — S. 149–160
2. Borodkin L.I., Mironenko M.S., Chertopolokhov V.A., Belousova M.D., Khlopikov V.V. — Tekhnologii virtual'noi i dopolnennoi real'nosti (VR/AR) v zadachakh rekonstruktsii istoricheskoi gorodskoi zastroiki (na primere moskovskogo Strastnogo monastyrya) // Istoricheskaya informatika. – 2018. – № 3. – S. 76 - 88. DOI: 10.7256/2585-7797.2018.3.27549 URL: https://nbpublish.com/library_read_article.php?id=27549
3. Uvarov A.Yu. Obrazovanie v mire tsifrovykh tekhnologii: na puti k tsifrovoi transformatsii Izd. dom GU-VShE, M.: 2018. — 168 s.
4. Bugrov D. I., Lebedev A. V., Chertopolokhov V. A. Otsenka uglovoi skorosti vrashcheniya tela pri pomoshchi sistemy trekinga // Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika. — 2014. — № 1. — S. 68–71.
5. Borodkin L. I. Tsifrovye tekhnologii v zadachakh virtual'noi rekonstruktsii istoricheskogo gorodskogo landshafta // Vestnik Permskogo universiteta. Seriya "Istoriya". — 2019. — № 3. — S. 109–117.
6. Kruchinina A. P., Latonov V. V., Chertopolokhov V. A. Obzor tekhnologii vizual'noi imitatsii v trenazhernykh sistemakh // Pilotiruemye polety v kosmos. — 2019. — № 3. — S. 89–107.
7. Fitts, Paul M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology. 47 (6): 381-391.
8. Feldman, A.G. (1986). Journal of Motor Behavior, 18:17-54.
9. Kruchinina, A. P. & Yakushev, A. G. (2018). A mathematical model of optimal saccadic eye movement by a pair of muscles. Biophysics. 63 (2): 241-247.
10. Kruchinina, A.P. & Yakushev, A.G. (2019). Statistical study of the single saccade eye movement forms. Journal of Mathematical Sciences. 22 (2).
11. NASA. (July, 1995). Man-Systems Integration Standards, Revision B.
12. Bellman, R. (1957). Functional Equations in the theory of dynamic programming. Ann. Math., 65.
13. Lemak S. S. K voprosu o formirovanii pozitsionnykh strategii differentsial'noi igry v metode ekstremal'nogo pritselivaniya N.N. Krasovskogo // Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika. — 2015. — № 6. — S. 61–65.

Результаты процедуры рецензирования статьи

В связи с политикой двойного слепого рецензирования личность рецензента не раскрывается.
Со списком рецензентов издательства можно ознакомиться здесь.

Предметом исследования рецензируемой статьи является решение ряда задач, связанных с математическим обеспечением процесса взаимодействия человека с элементами виртуального интерфейса при погружении в виртуальную реальность, связанную с выполнением реконструкции исторического рельефа Белого города.
В методологическом плане статья сводится к решению задач математического моделирования. В рассматриваемом исследовательском междисциплинарном проекте целью является разработка алгоритма численной оптимизации интерфейса в трехмерном виртуальном пространстве, сформированном историческим ландшафтом центра Москвы и соответствующей исторической застройкой, воссозданной с помощью 3D-моделирования.
Актуальность представленной статьи связана с развитием методов и технологий виртуальной реконструкции объектов историко-культурного наследия на основе 3D-моделирования. Новый этап в этой области определяется теми возможностями, которые принесли технологии виртуальной и дополненной реальности (VR/AR), позволяющие «погрузить» пользователя воссозданной реконструкции в виртуальную среду.
Научная новизна статьи связана с тем, что в рамках такого направления, как историческая урбанистика (городоведение), предлагается использовать технологии VR/AR в задачах виртуальной реконструкции исторического городского ландшафта. Конкретно речь идет о ландшафте Белого города – исторического центра Москвы XVI-XVIII вв.
Структура статьи соответствует ее содержанию и характеру: она состоит из основной части и математического приложения. В кратком введении подчеркивается, что статья посвящена научной виртуальной реконструкции исторических объектов, что предполагает помимо всего прочего адекватное источниковое фундирование исследования, необходимое для обеспечения достоверности искомой реконструкции. Далее дается краткая характеристика выполняемого проекта и производится постановка задач исследования. Основной является математическая задача, заключающаяся в создании алгоритма, обеспечивающего интерактивное взаимодействие пользователя с объектами виртуальной реальности, решение которой позволяет в реальном масштабе времени смоделировать биомеханику перемещений пользователя, оснащенного шлемом виртуальной реальности. Второй, не менее важной задачей данной работы является создание возможностей для верификации пользователем построенной виртуальной реконструкции исторического городского пространства (а именно – доминантных строений центра Москвы, «встроенных» в исторический рельеф). Интерактивное взаимодействие с этими объектами предоставляет доступ к разновидовым источникам, положенным в основу 3D-моделей соответствующих зданий (храмов, гражданских зданий). Объяснение предложенного авторами алгоритма потребовало использования современных методов математического моделирования. В этой связи следует отметить, что авторы нашли способ не перегружать читателя математическими выкладками, перенеся их в приложение к статье, рассчитанное на более подготовленных читателей.
Библиография статьи не очень велика по объему, но достаточно информативна. Она содержит как работы по тематике виртуальных исторических реконструкций, так и чисто математические публикации.
Каких-либо дискуссионных моментов в статье не рассматривается в силу ее специфики.
Статья представляет собой очередной шаг в сторону обеспечения высокой научности виртуальных исторических реконструкций. Она, безусловно, вызовет большой интерес определенного круга читателей, полностью соответствует формату журнала и имеет все основания быть опубликованной. Для этого, однако необходимо устранить ряд замечаний:
1. Заключение к статье следует расширить, в существующем виде оно выглядит недостаточно результативным.
2. Следует отредактировать математические формулы и выражения, поскольку ряд математических знаков отобразился некорректно. Необходимо исправить эти обозначения.
3. Следует отредактировать пункты 2 и 3 библиографии.
4. Указание на номер выполняемого проекта следует убрать из текста и вынести в соответствующее поле при загрузке статьи.
Статья рекомендуется к доработке.

Замечания главного редактора от 12.03.2020: автор доработал статью в соответсвтии с требованиями рецензента