Правильная ссылка на статью:
Пекунов В.В..
Улучшенная балансировка загрузки процессоров при численном решении задач механики сплошной среды, осложненных химической кинетикой
// Кибернетика и программирование.
2021. № 1.
С. 13-19.
DOI: 10.25136/2644-5522.2021.1.35101 URL: https://nbpublish.com/library_read_article.php?id=35101
Аннотация:
Рассматриваются некоторые аспекты процесса численного решения задач механики сплошной среды в условиях протекающих химических реакций. Такие задачи, обычно, отличаются наличием множества локальных областей с повышенной температурой, положение которых в пространстве относительно нестабильно. В таких условиях применяются жестко устойчивые методы интегрирования с контролем шага, которые в "горячих" областях имеют существенно большие временные затраты в сравнении с прочими областями. При использовании геометрического параллелизма данный факт приводит к существенному дисбалансу загрузки процессоров, снижающему общую эффективность распараллеливания. Поэтому в данной работе рассматривается проблема балансировки загрузки процессоров при параллельном решении вышеуказанных задач. Предложена новая модификация алгоритма крупноблочной распределенной балансировки с улучшенным предсказанием времени численного интегрирования уравнений химической кинетики, наиболее эффективная в условиях дрейфа "горячих" областей. Улучшение состоит в применении линейного персептрона, анализирующего несколько предыдущих значений времени интегрирования (в базовом варианте алгоритма используется лишь одна предыдущая точка из истории времени интегрирования). Это позволяет работать в условиях как быстрого, так и медленного дрейфа "горячих" областей. Эффективность данного подхода продемонстрирована на задаче моделирования обтекания здания, на крыше которого наблаюдается горение при высокой температуре. Показано, что применение модифицированного алгоритма повышает эффективность распараллеливания на 2,1% по сравнению с исходным алгоритмом.
Ключевые слова:
параллельные вычисления, балансировка загрузки, линейный персептрон, химическая кинетика, механика сплошной среды, распределенная балансировка, численное моделирование, численный эксперимент, апробация, геометрический параллелизм
Abstract:
This article explores certain aspects of the process of numerical solution of the tasks of continuous medium mechanics in the conditions of ongoing chemical reactions. Such tasks are usually characterized by the presence of multiple local areas with elevated temperature, which position in space is relatively unstable. In such conditions, rigidly stable methods of integration with step control, which in the “elevated temperature” areas that have higher time input comparing to other areas. In terms of using geometric parallelism, this fact leads to substantial imbalance of CPU load, which reduces the overall effectiveness of parallelization. Therefore, this article examines the problem of CPU load balancing in the context of parallel solution of the aforementioned tasks. The other offers a new modification of the algorithm of large-block distributed balancing with improved time prediction of the numerical integration of chemical kinetics equations, which is most effective in the conditions of drift of the areas with “elevated temperatures”. The improvement consists in application of the linear perceptron, which analyzes several previous values of time integration (the basic version of the algorithm uses only one previous spot from the history of time integration). This allows working in the conditions of fast and slow drift of the areas with “elevated temperatures”. The effectiveness of this approach is demonstrated on the task of modeling the flow-around the building with high-temperature combustion on its roof. It is indicated that the application of modified algorithm increases the effectiveness of parallelization by 2.1% compared to the initial algorithm.
Keywords:
numerical simulation, distributed balancing, continuous medium mechanics, chemical kinetics, linear perceptron, load balancing, parallel computations, numerical experiment, approbation, geometrical parallelizing