Рус Eng Cn Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Исследования космоса
Правильная ссылка на статью:

Серга Э.В. Физический вакуум как форма материи: новый взгляд на структуру и свойства

Аннотация: Предмет исследования – физический (космический) вакуум как материальная среда. В современном естествознании отсутствует единое представление о сущности физического вакуума: в квантовой теории поля известны вакуумные эффекты, характеризующие вакуум как материальную среду, в физике конденсированных сред вакуум рассматривается как сверхтекучая квантовая жидкость, в небесной механике, космологии и космонавтике - как пустое пространство. Задачами настоящего исследования стали 1) обобщение и систематизация данных о структуре, свойствах и эффектах вакуума, наблюдаемых в микромире и космосе, и концептуальных подходов к их объяснению; 2) анализ возникающих противоречий и поиск теоретической модели, позволяющей непротиворечиво объяснить существующие данные о физическом вакууме; 3) обоснование метода проверки правильности полученного решения. Ключевыми предпосылками работы являются представления о симметрии гравитационных взаимодействий как физической реальности, а также о единстве теории вакуума, как в физике микромира, так и в физике космоса. Для решения поставленных задач использованы общенаучные методы и приемы исследования (обобщение, анализ, синтез), методы формальной логики, гипотетико-дедуктивный метод, моделирование. В результате исследования разработана теоретическая модель, непротиворечиво объясняющая сочетание свойств физического вакуума как пустого пространства и плотной упругой среды. На основе предложенной модели исследовано влияние вакуума на движение небесных тел и дано объяснение ряду вакуумных эффектов в микромире и космосе, включая возникновения силы инерции в вакууме. Предложена схема эксперимента с использованием искусственных спутников Земли по определению влияния вакуума на движение небесных тел.


Ключевые слова:

Физический вакуум, Вакуумные эффекты, Космический ветер, Смещение перигелия Меркурия, Поляризация вакуума, Сила инерции, Антигравитация, Скорость гравитации, Квантовая жидкость, Красное смещение

Abstract: The research subject is the physical (space) vacuum as a matter. In modern science there is no common understanding of the nature of the physical vacuum. The Quantum Field Theory knows some vacuum effects that characterize vacuum as a matter. The Condensed Matter Physics considers vacuum as a quantum liquid that is characterized by superfluidity. The Celestial Mechanics, Cosmology, and Space Exploration consider vacuum as empty space. The objectives of this study are 1) compilation and systematization of data on the structure, properties and the vacuum effects observed in the microcosm and the Space, and conceptual approaches to their interpretation; 2) analysis of emerging contradictions and the search for theoretical models consistently explaining the existing data on the physical vacuum; 3) substantiation of the method of validation of the presented solution. The key prerequisites for this study are the ideas about gravitational interactions symmetry as a physical reality, about the unity of the vacuum theory both in microphysics and cosmophysics. To solve the research tasks, the author uses general scientific methods and research techniques (generalization, analysis, synthesis), the methods of formal logic, the hypothetico-deductive method, and modeling. The author designs a theoretical model, which consistently explains the combination of qualities of physical vacuum as empty space and condensed elastic medium. Based on the proposed model, the author studies the impact of vacuum on the movement of celestial bodies and explains the range of vacuum effects in microcosm and the space, including the emergence of inertia in vacuum. The author offers the experiment scheme, based on the use of artificial Earth satellites, for defining the impact of vacuum on the movement of celestial bodies. 


Keywords:

Speed of gravity, Anti-gravity, Inertia, Vacuum polarization, Space wind, Vacuum effects, Physical vacuum, Quantum fluid, Redshift


Эта статья может быть бесплатно загружена в формате PDF для чтения. Обращаем ваше внимание на необходимость соблюдения авторских прав, указания библиографической ссылки на статью при цитировании.

Скачать статью

Библиография
1. Герц Г. Р. Принципы механики, изложенные в новой связи / Пер. с нем. М.: Изд. АН СССР, 1959. – 388 с.
2. Dirac P. A. M. A Theory of Electrons and Protons // Proceedings of Royal Society Lond. A. 1930. Vol. 126. Issue 801. P. 360–365.
3. Дирак П.А.М. Лекции по квантовой теории поля. М.: Мир, 1971.
4. Дирак П.А.М. Пути физики. М.: Энергоатомиздат, 1983.
5. Максвелл Д.К. Статьи и речи. М.: Наука, 1968.
6. Weinberg S. Conceptual foundations of the unified theory of weak and electromagnetic interactions // Reviews of Modern Physics. 1980. Vol. 52. № 3. P. 515-523.
7. Wheeler J.A. Beyond the End of Time, in Black Holes, Gravitational Waves and Cosmology, 1974.
8. Фейнман Р. Развитие пространственно-временной трактовки квантовой электродинамики // Успехи физической науки. 1967. Т. 91. Вып. 1. С. 29-48.
9. Сахаров А.Д. Вакуумные квантовые флуктуации в искривленном пространстве и теория гравитации // Доклады Академии наук СССР. 1967. Т. 177. № 1. С.70-71.
10. Бриллюэн Л. Новый взгляд на теорию относительности. Пер. с англ. – М.: Мир, 1972. – 143 с.
11. Misner C., Thorne K., Wheeler J. Gravitation. San Francisco, W.H. Freeman, 1973. P. 426—428.
12. Зельдович Я.Б. Теория вакуума, быть может, решает проблему космологии // Успехи физических наук. 1981. Т. 133. Вып.3. С. 479-503.
13. Фейнман Р. Характер физических законов. М.: Наука, 1987. – 160 с.
14. Джеммер М. Понятие массы в классической и современной физике. Пер. с англ. – М., «Прогресс», 1967.
15. Neumann C.G. Über die den Kräften electrodynamischen Ursprungs zuzuschreiben den Elementargezetze // Abhandlungen der mathematisch-physikalischen Classe der Könglishen Sächsischen Gesellschaft der Wissenschaften. 1874. Vol. 10 (6). P. 417-524
16. Seeliger H. Über das Newton’sche Gravitations-Gesetz // Astronomische Nachrichten. 1895. Vol. 137. P. 129-136.
17. Föppl A. Über eine mögliche Erweiterung des Newton’schen Gravitations-Gesetzes // Sitzungsberichte der math.-phys. Classe der K. B. Academie der Wissenschaften zu München. 1897, Vol. 27. P. 93-99.
18. Pearson K. On the Motion of spherical and ellipsoidal bodies in fluid media // Quarterly Journal of pure and Applied Mathematics. 1885. Vol. XX. P. 60-80.
19. Schrödinger E. Über das Losungssystem der allgemein kovarianten Gravitatiosglechungen // Physikalische Zeitschrift. 1918. Vol. 19. P. 20-22.
20. Наан Г. Проблемы и тенденции релятивистской космологии / Эйнштейновский сборник. – М., 1966. С. 339-375.
21. Воловик Г.Е. От эфира Ньютона к вакууму современной физики конденсированных сред // Ньютон и философские проблемы ХХ века. – М., 1991. С. 88-98.
22. Klinkhamer F.R., Volovik G.E. Dark matter from dark energy in q-theory // Письма в ЖЭТФ. 2017. Vol. 105. № 2. P. 62-63.
23. Серга Э.В. Строение материи. Основы единой теории вакуума и вещества. М.: Издательство МГУЛ, 2006. – 182 c.
24. Cooper, Leon N. Bound electron pairs in a degenerate Fermi gas // Physical Review. 1956. Vol. 104. № 4. P. 1189–1190.
25. Физика микромира: маленькая энциклопедия / гл. ред. чл.-корр. АН СССР Д. В. Ширков ; ред. кол.: С.С.Герштейн и др. М.: Советская энциклопедия, 1980. - 527 с.
26. Герц Г. Принципы механики, изложенные в новой связи / Серия «Классики науки». – М.: Издательство АН СССР, 1959. – 386 с.
27. Pannekoek A. The Planetary Theory of Ptolemy // Popular Astronomy. 1947. Vol. LV. № 9. P. 459-476.
28. Физика космоса. Маленькая энциклопедия / Гл. ред. Р.А. Сюняев. М.: Советская энциклопедия, 1986. – 783 с.
29. Allen’s Astrophysical Quantities / Ed. A.N. Cox. New York: Springer-Verlag, 2002. – 721 p.
30. Bethe H. A. The Electromagnetic Shift of Energy Levels // Physical Review. 1947. Vol. 72. № 4. P. 339-341.
31. Лэмб У.Е., Резерфорд Р.К. Тонкая структура водородного атома // Успехи физических наук. 1951. Т. 45. № 4. С. 553–615.
32. Соколов Ю. Л., Яковлев В. П., Измерение лэмбовского сдвига в атоме водорода (n=2) // Журнал экспериментальной и теоретической физики. 1982. Т. 83. № 1. С. 7-17.
33. Hall A. A suggestion in the theory of Mercury // Astronomical Journal. 1894. Vol. 14. № 319. P. 49-51.
34. Gerber P. Die räumliche und zeitliche Ausbreitung der Gravitation // Zeitschrift für Mathematik und Physik. 1898. Vol. 43. P. 93–104. URL: http://www.archive.org/details/zeitschriftfrma14runggoog (дата обращения: 11.05.2017).
35. Эйнштейн А. Объяснение движения перигелия Меркурия в общей теории относительности // Собр. научных трудов. Т.1. – М.: Наука, 1965. С. 439-447.
36. Shapiro I.I., Counselman C.C., King R.W. Verification of the Principle Equivalence for Massive Bodies // Physical Review Letters. 1976. Vol. 36. Iss. 11. P. 555-558. URL: http://dx.doi.org/10.1103/PhysRevLett.36.555 (дата обращения: 11.05.2017).
37. Anderson J.D., Slade M.A., Jurgens R.F., Lau E.L., Newhall X.X., Myles E. Radar and spacecraft ranging to Mercury between 1966 and 1988 // Publications of the Astronomical Society of Australia (PASA). 1991.Vol. 9. № 2. P. 324.
38. Dicke R.H., Goldenberg H.M. 1967. Solar oblateness and General Relativity // Physical Review Letters. 1967. Vol. 18. Iss. 9. P. 313–316.
39. Роузвер Н.Т. Перигелий Меркурия. От Леверье до Эйнштейна / Пер. с англ. А.С. Расторгуев. М.: Мир, 1985. – 244 с.
40. Серга Э.В. Космический вакуум. Введение в теорию. М.: Центр экономики и маркетинга, 2002. – 128 c.
41. Newcomb S. Tables on the heliocentric motion of Mars // Astronomical Papers. 1989. Vol. 6 Pt. 4 1898. P. 383-586
42. Вавилов С. И. Экспериментальные основания теории относительности, 1928 // Собр. соч. Т. IV.– М.: Издательство АН СССР, 1956.
43. Брагинский В. Б. Экспериментальная проверка теории относительности. – М.: Знание, 1977. – 64 с.
References
1. Gerts G. R. Printsipy mekhaniki, izlozhennye v novoi svyazi / Per. s nem. M.: Izd. AN SSSR, 1959. – 388 s.
2. Dirac P. A. M. A Theory of Electrons and Protons // Proceedings of Royal Society Lond. A. 1930. Vol. 126. Issue 801. P. 360–365.
3. Dirak P.A.M. Lektsii po kvantovoi teorii polya. M.: Mir, 1971.
4. Dirak P.A.M. Puti fiziki. M.: Energoatomizdat, 1983.
5. Maksvell D.K. Stat'i i rechi. M.: Nauka, 1968.
6. Weinberg S. Conceptual foundations of the unified theory of weak and electromagnetic interactions // Reviews of Modern Physics. 1980. Vol. 52. № 3. P. 515-523.
7. Wheeler J.A. Beyond the End of Time, in Black Holes, Gravitational Waves and Cosmology, 1974.
8. Feinman R. Razvitie prostranstvenno-vremennoi traktovki kvantovoi elektrodinamiki // Uspekhi fizicheskoi nauki. 1967. T. 91. Vyp. 1. S. 29-48.
9. Sakharov A.D. Vakuumnye kvantovye fluktuatsii v iskrivlennom prostranstve i teoriya gravitatsii // Doklady Akademii nauk SSSR. 1967. T. 177. № 1. S.70-71.
10. Brillyuen L. Novyi vzglyad na teoriyu otnositel'nosti. Per. s angl. – M.: Mir, 1972. – 143 s.
11. Misner C., Thorne K., Wheeler J. Gravitation. San Francisco, W.H. Freeman, 1973. P. 426—428.
12. Zel'dovich Ya.B. Teoriya vakuuma, byt' mozhet, reshaet problemu kosmologii // Uspekhi fizicheskikh nauk. 1981. T. 133. Vyp.3. S. 479-503.
13. Feinman R. Kharakter fizicheskikh zakonov. M.: Nauka, 1987. – 160 s.
14. Dzhemmer M. Ponyatie massy v klassicheskoi i sovremennoi fizike. Per. s angl. – M., «Progress», 1967.
15. Neumann C.G. Über die den Kräften electrodynamischen Ursprungs zuzuschreiben den Elementargezetze // Abhandlungen der mathematisch-physikalischen Classe der Könglishen Sächsischen Gesellschaft der Wissenschaften. 1874. Vol. 10 (6). P. 417-524
16. Seeliger H. Über das Newton’sche Gravitations-Gesetz // Astronomische Nachrichten. 1895. Vol. 137. P. 129-136.
17. Föppl A. Über eine mögliche Erweiterung des Newton’schen Gravitations-Gesetzes // Sitzungsberichte der math.-phys. Classe der K. B. Academie der Wissenschaften zu München. 1897, Vol. 27. P. 93-99.
18. Pearson K. On the Motion of spherical and ellipsoidal bodies in fluid media // Quarterly Journal of pure and Applied Mathematics. 1885. Vol. XX. P. 60-80.
19. Schrödinger E. Über das Losungssystem der allgemein kovarianten Gravitatiosglechungen // Physikalische Zeitschrift. 1918. Vol. 19. P. 20-22.
20. Naan G. Problemy i tendentsii relyativistskoi kosmologii / Einshteinovskii sbornik. – M., 1966. S. 339-375.
21. Volovik G.E. Ot efira N'yutona k vakuumu sovremennoi fiziki kondensirovannykh sred // N'yuton i filosofskie problemy KhKh veka. – M., 1991. S. 88-98.
22. Klinkhamer F.R., Volovik G.E. Dark matter from dark energy in q-theory // Pis'ma v ZhETF. 2017. Vol. 105. № 2. P. 62-63.
23. Serga E.V. Stroenie materii. Osnovy edinoi teorii vakuuma i veshchestva. M.: Izdatel'stvo MGUL, 2006. – 182 c.
24. Cooper, Leon N. Bound electron pairs in a degenerate Fermi gas // Physical Review. 1956. Vol. 104. № 4. P. 1189–1190.
25. Fizika mikromira: malen'kaya entsiklopediya / gl. red. chl.-korr. AN SSSR D. V. Shirkov ; red. kol.: S.S.Gershtein i dr. M.: Sovetskaya entsiklopediya, 1980. - 527 s.
26. Gerts G. Printsipy mekhaniki, izlozhennye v novoi svyazi / Seriya «Klassiki nauki». – M.: Izdatel'stvo AN SSSR, 1959. – 386 s.
27. Pannekoek A. The Planetary Theory of Ptolemy // Popular Astronomy. 1947. Vol. LV. № 9. P. 459-476.
28. Fizika kosmosa. Malen'kaya entsiklopediya / Gl. red. R.A. Syunyaev. M.: Sovetskaya entsiklopediya, 1986. – 783 s.
29. Allen’s Astrophysical Quantities / Ed. A.N. Cox. New York: Springer-Verlag, 2002. – 721 p.
30. Bethe H. A. The Electromagnetic Shift of Energy Levels // Physical Review. 1947. Vol. 72. № 4. P. 339-341.
31. Lemb U.E., Rezerford R.K. Tonkaya struktura vodorodnogo atoma // Uspekhi fizicheskikh nauk. 1951. T. 45. № 4. S. 553–615.
32. Sokolov Yu. L., Yakovlev V. P., Izmerenie lembovskogo sdviga v atome vodoroda (n=2) // Zhurnal eksperimental'noi i teoreticheskoi fiziki. 1982. T. 83. № 1. S. 7-17.
33. Hall A. A suggestion in the theory of Mercury // Astronomical Journal. 1894. Vol. 14. № 319. P. 49-51.
34. Gerber P. Die räumliche und zeitliche Ausbreitung der Gravitation // Zeitschrift für Mathematik und Physik. 1898. Vol. 43. P. 93–104. URL: http://www.archive.org/details/zeitschriftfrma14runggoog (data obrashcheniya: 11.05.2017).
35. Einshtein A. Ob''yasnenie dvizheniya perigeliya Merkuriya v obshchei teorii otnositel'nosti // Sobr. nauchnykh trudov. T.1. – M.: Nauka, 1965. S. 439-447.
36. Shapiro I.I., Counselman C.C., King R.W. Verification of the Principle Equivalence for Massive Bodies // Physical Review Letters. 1976. Vol. 36. Iss. 11. P. 555-558. URL: http://dx.doi.org/10.1103/PhysRevLett.36.555 (data obrashcheniya: 11.05.2017).
37. Anderson J.D., Slade M.A., Jurgens R.F., Lau E.L., Newhall X.X., Myles E. Radar and spacecraft ranging to Mercury between 1966 and 1988 // Publications of the Astronomical Society of Australia (PASA). 1991.Vol. 9. № 2. P. 324.
38. Dicke R.H., Goldenberg H.M. 1967. Solar oblateness and General Relativity // Physical Review Letters. 1967. Vol. 18. Iss. 9. P. 313–316.
39. Rouzver N.T. Perigelii Merkuriya. Ot Lever'e do Einshteina / Per. s angl. A.S. Rastorguev. M.: Mir, 1985. – 244 s.
40. Serga E.V. Kosmicheskii vakuum. Vvedenie v teoriyu. M.: Tsentr ekonomiki i marketinga, 2002. – 128 c.
41. Newcomb S. Tables on the heliocentric motion of Mars // Astronomical Papers. 1989. Vol. 6 Pt. 4 1898. P. 383-586
42. Vavilov S. I. Eksperimental'nye osnovaniya teorii otnositel'nosti, 1928 // Sobr. soch. T. IV.– M.: Izdatel'stvo AN SSSR, 1956.
43. Braginskii V. B. Eksperimental'naya proverka teorii otnositel'nosti. – M.: Znanie, 1977. – 64 s.