Рус Eng Cn Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Программные системы и вычислительные методы
Правильная ссылка на статью:

А.Г. Коробейников, Н.Г. Птицына, В.С. Исмагилов, Ю.А. Копытенко Вычисление топологии магнитного поля в электромобиле с использованием фазово-градиентного метода

Аннотация: Электрификация дорожного транспорта является в настоящее время приоритетным направлением развития науки, технологий и техники. Это связано со многими факторами и рисками как то: изменение климата, здоровье населения, зависимость от энергии, а также стоимость исходных материалов. При эксплуатации электромобилей и гибридных автомобилей необходим контроль магнитного поля в реальном масштабе времени, например, для пожарной и электромагнитной безопасности. В работе представлен разработанный метод измерения магнитных полей на борту электрического автомобиля с учетом специфики этих полей. Метод опирается на дифференциальные методы измерения и минимизирует количество магнитометрических датчиков.


Ключевые слова:

Программное обеспечение, электромобиль, магнитное поле, электромагнитная безопасность, измерение магнитного поля, фазово-градиентный метод, дифференциальные методы измерения, дорожный транспорт, экология, здоровье

Abstract: electrification of the read transport now days a priority in the development of science, technology and engineering due to the many factors and risks such as climate change, health of the people, energy dependence, cost of the raw materials. When operating the electric and hybrid vehicles it is important to control the magnetic field in real time, for example, for fire and electromagnetic safety. This article presents a developed method of magnetic field measurement on board of the electric vehicle with consideration of the specific of these fields. The method is based on the differential methods of measurement and minimizes the quantity of magnetometric sensors.


Keywords:

Software, electric vehicle, magnetic field, electromagnetic safety, measurement of the magnetic field, phase-gradient method, differential measurement methods, road transport, ecology, health


Эта статья может быть бесплатно загружена в формате PDF для чтения. Обращаем ваше внимание на необходимость соблюдения авторских прав, указания библиографической ссылки на статью при цитировании.

Скачать статью

Библиография
1. Григорьев Ю.Г., Григорьев О.А., Степанов В.С., Пальцев Ю.П. Электромагнитное загрязнение окружающей среды и здоровье населения Россию. М., 1997, 91 С.
2. NIEHS Working Group Report, Assessment of Health Effects from Exposure to Power-Line Frequency Electric and Magnetic Fields (Eds C.J. Portier, M.S. Wolfe) NIH Publ. No. 98-3981, 1998.
3. Птицына Н.Г., Дж. Виллорези, Дорман Л.И., Н. Юччи, Тясто М.И. Естественные и техногенные низкочастотные магнитные поля как факторы, потенциально опасные для здоровья//УФН (Успехи физических наук) – 1998, Т. 168, №7, С. 767-791.
4. Григорьев Ю.Г., Степанов В.С., Григорьев О.А., Меркулов А.В. Электромагнитная безопасность человека. Справочно-информационное пособие. Российский национа-льный комитет по защите от неионизирующих излучений, 1999. 146 С.
5. Muc A.M., Electromagnetic Fields Associated with Transportation Systems, Radiation Health and Safety Consulting, Contract Report 4500016448, Air Health Effects Division, Healthy Environments and Consumer Safety Branch Health, Canada, 2002.
6. Schick M. and Jakobus U. Advanced EMC modeling features in FEKO for Automotive Problems. Proceedings of the 22th International Conference on Electromagnetic Compatiability “EMC Europe 2012”, Rome, Italy, 17– 21 September, 2012.
7. Ptitsyna N., Ponzetto A. Magnetic Fields Encountered in Electric Transport: Rail Systems, Trolleybus and Cars. Proceedings of the 22th International Conference on Electromagnetic Compatiability “EMC Europe 2012”, Rome, Italy, 17– 21 September, 2012.
8. Swiss Federal OfÞ ce of Public Health, Cars, hybrid cars, Technical Report, 2009 http://www. bag.admin.ch/themen/strahlung/00053/00673/02377/index.html?lang =en. Последняя дата обращения – 05.11.2012 г.
9. Vedholm, K., and Hamnerius, Y.K., 1997. “Personal Exposure Resulting from Low Level Low Frequency Electromagnetic Fields in Automobiles,” Abstract F-9, Second World Congress for Electricity and Magnetism in Medicine and Biology, June 8-13, Bologna, Italy, 1997.
10. Farag A.S., H. Hussain, I. Said, M. Abdel Kader, N. Abdul Rahman. Electromagnetic Fields Associated with Transportation Systems in Malaysia. Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR 2003) Electromagnetic Fields and Our Health, October 2003.
11. Ptitsyna N.G., Villoresi G. and Kopytenko Yu.A. Magnetic Þ elds from railway: environmental aspects. In “Railway Transportation: Policies, Technology and Perspectives”, ed. by F. Columbus, N.Y., Novapublishers. 2009.
12. Птицына Н.Г., Виллорези Дж., Копытенко Ю.А. Тясто М.И. Магнитные поля на электротранспорте и экология человека. Санкт-Петербург, Изд.Нестор-История. 2010. С. 120.
13. Halgamuge, M. N., C. D. Abeyrathne and P. Mendis. Measurements performed in electric trains – Comparison with ICNIRP Limit & Laboratory Experiments. “Measurement and Analysis of Electromagnetic Fields from Trams, Trains and Hybrid Cars”, Radiation Protection Dosimetry, Vol. 141, Issue 3, pp 255-268, 2010.
14. Ptitsyna N.G., Y.A. Kopytenko, G. Villoresi, D.H. Pfluger, V. Ismaguilov, N. Iucci, E.A. Kopytenko, D.B. Zaitzev, P.M. Voronov, M.I Tyasto. Waveform Magnetic Field Survey in Russian DC– and Swiss AC-powered Trains: a Basis for Biologically Relevant Exposure Assessment. Bioelectromagnetics. 24, 546-556. 2003.
15. Копытенко Ю.А., Исмагилов В.С., Копытенко Е.А., Воронов П.М., Зайцев Д.Б. Магнитная локация источников геомагнитных возмущений//ДАН /серия “Геофизика”. 2000. Т. 371. № 5. С. 685-687.
16. Ismaguilov V.S., Kopytenko Yu.A., Hattori K., P. M. Voronov, O. A. Molchanov, and M. Hayakawa. ULF Magnetic Emissions Connected with Under Sea Bottom Earthquakes // Natural Hazards and Earth Sys. Sci. V. 1. P. 1-9. 2001.
17. Ismaguilov V.S., Kopytenko Yu.A., Hattori K., Hayakawa M. Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes // Natural Hazards and Earth Sys. Sci. V.20. P.1-5. 2002.
18. Kopytenko Yu.A., Ismagilov V. S., K. Hattori, M. Hayakawa. Investigation of the ULF electromagnetic phenomena related to earthquakes: contemporary achievements and the perspectives // Annali di GeoÞ sika. V. 44. № 2. P. 325-334. 2001.
19. Исмагилов В. С., Ю. А. Копытенко, К. Хаттори, М. Хаякава. Использование гра-диен тов и фазовых скоростей УНЧ геомагнитных возмущений для определения местоположения очага будущего сильного землетрясения. Геомагнетизм и Аэрономия, т.46, №3, стр.423-430, 2006.
20. Коробейников А.Г., Копытенко Ю.А., Исмагилов В.С. Интеллектуальные информа-ционные системы магнитных измерений//Научно-технический вестник СПб ГУ ИТМО– СПб: СПбГУ ИТМО, 2011, 1(71)– с.39-44.
21. Snyder M. Magnetic Shielding for Electric Vechicles. Program Review. Contract DAAE07-93-C-R107. Army TACOM, Chrysler Corp. 1995
References
1. Grigor'ev Yu.G., Grigor'ev O.A., Stepanov V.S., Pal'tsev Yu.P. Elektromagnitnoe zagryaznenie okruzhayushchey sredy i zdorov'e naseleniya Rossiyu. M., 1997, 91 S.
2. NIEHS Working Group Report, Assessment of Health Effects from Exposure to Power-Line Frequency Electric and Magnetic Fields (Eds C.J. Portier, M.S. Wolfe) NIH Publ. No. 98-3981, 1998.
3. Ptitsyna N.G., Dzh. Villorezi, Dorman L.I., N. Yuchchi, Tyasto M.I. Estestvennye i tekhnogennye nizkochastotnye magnitnye polya kak faktory, potentsial'no opasnye dlya zdorov'ya//UFN (Uspekhi fizicheskikh nauk) – 1998, T. 168, №7, S. 767-791.
4. Grigor'ev Yu.G., Stepanov V.S., Grigor'ev O.A., Merkulov A.V. Elektromagnitnaya bezopasnost' cheloveka. Spravochno-informatsionnoe posobie. Rossiyskiy natsiona-l'nyy komitet po zashchite ot neioniziruyushchikh izlucheniy, 1999. 146 S.
5. Muc A.M., Electromagnetic Fields Associated with Transportation Systems, Radiation Health and Safety Consulting, Contract Report 4500016448, Air Health Effects Division, Healthy Environments and Consumer Safety Branch Health, Canada, 2002.
6. Schick M. and Jakobus U. Advanced EMC modeling features in FEKO for Automotive Problems. Proceedings of the 22th International Conference on Electromagnetic Compatiability “EMC Europe 2012”, Rome, Italy, 17– 21 September, 2012.
7. Ptitsyna N., Ponzetto A. Magnetic Fields Encountered in Electric Transport: Rail Systems, Trolleybus and Cars. Proceedings of the 22th International Conference on Electromagnetic Compatiability “EMC Europe 2012”, Rome, Italy, 17– 21 September, 2012.
8. Swiss Federal OfÞ ce of Public Health, Cars, hybrid cars, Technical Report, 2009 http://www. bag.admin.ch/themen/strahlung/00053/00673/02377/index.html?lang =en. Poslednyaya data obrashcheniya – 05.11.2012 g.
9. Vedholm, K., and Hamnerius, Y.K., 1997. “Personal Exposure Resulting from Low Level Low Frequency Electromagnetic Fields in Automobiles,” Abstract F-9, Second World Congress for Electricity and Magnetism in Medicine and Biology, June 8-13, Bologna, Italy, 1997.
10. Farag A.S., H. Hussain, I. Said, M. Abdel Kader, N. Abdul Rahman. Electromagnetic Fields Associated with Transportation Systems in Malaysia. Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR 2003) Electromagnetic Fields and Our Health, October 2003.
11. Ptitsyna N.G., Villoresi G. and Kopytenko Yu.A. Magnetic Þ elds from railway: environmental aspects. In “Railway Transportation: Policies, Technology and Perspectives”, ed. by F. Columbus, N.Y., Novapublishers. 2009.
12. Ptitsyna N.G., Villorezi Dzh., Kopytenko Yu.A. Tyasto M.I. Magnitnye polya na elektrotransporte i ekologiya cheloveka. Sankt-Peterburg, Izd.Nestor-Istoriya. 2010. S. 120.
13. Halgamuge, M. N., C. D. Abeyrathne and P. Mendis. Measurements performed in electric trains – Comparison with ICNIRP Limit & Laboratory Experiments. “Measurement and Analysis of Electromagnetic Fields from Trams, Trains and Hybrid Cars”, Radiation Protection Dosimetry, Vol. 141, Issue 3, pp 255-268, 2010.
14. Ptitsyna N.G., Y.A. Kopytenko, G. Villoresi, D.H. Pfluger, V. Ismaguilov, N. Iucci, E.A. Kopytenko, D.B. Zaitzev, P.M. Voronov, M.I Tyasto. Waveform Magnetic Field Survey in Russian DC– and Swiss AC-powered Trains: a Basis for Biologically Relevant Exposure Assessment. Bioelectromagnetics. 24, 546-556. 2003.
15. Kopytenko Yu.A., Ismagilov V.S., Kopytenko E.A., Voronov P.M., Zaytsev D.B. Magnitnaya lokatsiya istochnikov geomagnitnykh vozmushcheniy//DAN /seriya “Geofizika”. 2000. T. 371. № 5. S. 685-687.
16. Ismaguilov V.S., Kopytenko Yu.A., Hattori K., P. M. Voronov, O. A. Molchanov, and M. Hayakawa. ULF Magnetic Emissions Connected with Under Sea Bottom Earthquakes // Natural Hazards and Earth Sys. Sci. V. 1. P. 1-9. 2001.
17. Ismaguilov V.S., Kopytenko Yu.A., Hattori K., Hayakawa M. Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes // Natural Hazards and Earth Sys. Sci. V.20. P.1-5. 2002.
18. Kopytenko Yu.A., Ismagilov V. S., K. Hattori, M. Hayakawa. Investigation of the ULF electromagnetic phenomena related to earthquakes: contemporary achievements and the perspectives // Annali di GeoÞ sika. V. 44. № 2. P. 325-334. 2001.
19. Ismagilov V. S., Yu. A. Kopytenko, K. Khattori, M. Khayakava. Ispol'zovanie gra-dien tov i fazovykh skorostey UNCh geomagnitnykh vozmushcheniy dlya opredeleniya mestopolozheniya ochaga budushchego sil'nogo zemletryaseniya. Geomagnetizm i Aeronomiya, t.46, №3, str.423-430, 2006.
20. Korobeynikov A.G., Kopytenko Yu.A., Ismagilov V.S. Intellektual'nye informa-tsionnye sistemy magnitnykh izmereniy//Nauchno-tekhnicheskiy vestnik SPb GU ITMO– SPb: SPbGU ITMO, 2011, 1(71)– s.39-44.
21. Snyder M. Magnetic Shielding for Electric Vechicles. Program Review. Contract DAAE07-93-C-R107. Army TACOM, Chrysler Corp. 1995