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НОВЫЙ МЕТОД ИССЛЕДОВАНИЯ ПОВЕРХНОСТИ: 

ВОССТАНОВЛЕНИЕ СВЕРХВЫСОКОГО 

РАЗРЕШЕНИЯ ОРБИТАЛЬНЫХ СНИМКОВ МАРСА, 

ВЫПОЛНЕННЫХ ПУТЕМ МНОГОКРАТНОГО 

ПРОХОДА / A NOVEL METHOD FOR SURFACE 

EXPLORATION: SUPER-RESOLUTION RESTORATION 

OF MARS REPEAT-PASS ORBITAL IMAGERY

Аннотация. Высокая степень разрешения снимков поверхностей высоко ценится международным сообществом плане-
тологов, заинтересованных в улучшении понимания процессов формирования поверхностей планет. Однако, учитывая 
различные физические ограничения инструментов визуализации, связанных, главным образом, с шириной полосы про-
пускания каналов передачи данных, необходимо найти компромисс между степенью пространственного разрешения и 
пропускной способностью. Однако, даже в случае использования оптических каналов связи, вряд ли будущие системы 
визуализации окажутся способны показывать для большинства планетарных тел, таких как Марс, детали размером 
меньше, чем 25 см. В настоящей статье предложена новая технология потокового восстановления сверхвысокого раз-
решения изображений Gotcha-PDE-TV (GPT), которая использует дополнительную, так называемую «субпиксельную» 
информацию о небольших искажениях растра, связанную с флуктуацией зенитного угла зрения при последовательных 
съемках. Благодаря этой методике, использование избыточной информации, содержащейся в необработанных сним-
ках, позволяет повысить степень разрешения итоговых изображений. В работе продемонстрирована оптимальность 
использования предлагаемой технологии для восстановления сверхвысокого разрешения планетарных изображений на 
примере обработки данных проекта получения изображений с высоким разрешением (25 сm High Resolution Imaging 
Science Experiment – 25 cm HiRISE). В рамках этого эксперимента были, в частности, получены изображения кратера 
Гусева путем его многократного пересечения марсоходом MER-A (Mars Exploration Rover – MER-A). В результате 
обработки по предложенной технологии 8 изображений, снятых с разрешением 25 см, удалось восстановить снимки 
этой зоны с разрешением 5 см.Оценка достоверности воссозданных изображений со сверхвысоким 5-сантиметровым 
разрешением была проведена с использованием снимков поверхности, полученных тогда же навигационной камерой 
(Navcam) марсохода, путем сопоставления ориентиров на обоих наборах снимков.
Ключевые слова: Марс, Орбитальные снимки, Многократный проход, HiRISE, Сверхвысокое разрешение, Планетоход, 
Космическая наука, Кратер Гусева, Планетология, Поверхность планеты.

Abstract. Higher resolution imaging data of planetary surfaces is considered desirable by the international community of 
planetary scientists interested in improving understanding of surface formation processes. However, given various physical 
constraints from the imaging instruments through to limited bandwidth of transmission one needs to trade-off spatial resolu-
tion against bandwidth. Even given optical communications, future imaging systems are unlikely to be able to resolve features 
smaller than 25 cm on most planetary bodies, such as Mars. In this paper, we propose a novel super-resolution restoration 
technique, called Gotcha-PDE-TV (GPT), taking advantage of the non-redundant sub-pixel information contained in multiple 
raw orbital images in order to restore higher resolution imagery. We demonstrate optimality of this technique in planetary image 
super-resolution restoration with example processing of 8 repeat-pass 25 cm HiRISE images covering the MER-A Spirit rover 
traverse in Gusev crater to resolve a 5 cm resolution of the area. We assess the “true” resolution of the 5 cm super-resolution 
restored images using contemporaneous rover Navcam imagery on the surface and an inter-comparison of landmarks in the 
two sets of imagery.
Keywords: Planetology, Gusev crater, Space Science, Rover, Super-resolution, HiRISE, Repeat-pass, Orbital images, Mars, 
Planetary Surface.
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1. Introduction

Higher spatial resolution imaging data is almost always considered desirable to the international 
community of planetary scientists interested in improving understanding of surface formation 
processes. The higher the resolution, the closer the images are to the types of resolution used by 
geologists to interpret such processes on Earth.

For example, studying an area on Mars using 12 m panchromatic HRSC (High Resolution Stereo Camera 
- http://sci.esa.int/mars-express) allows you to be able to visualise the geological context whilst 6 m CTX 
(Context Camera – http://mars.jpl.nasa.gov/mro) images allows you to see important mineralogical and 
geomorphological information which you cannot easily see in HRSC and ϐinally for a tiny percentage of the 
Martian surface (≈1%), 25 cm HiRISE (High Resolution Imaging Science Experiment – http://mars.jpl.nasa.
gov/mro) allows you to see details of surface features such as ϐine-scale layering. However, the resolution of 
25 cm is not high enough to view features such as individual rocks with diameters less than 0.75 m or see the 
types of sedimentary features that MSL (Mars Science Laboratory – http://mars.nasa.gov/msl) Curiosity has 
found in rover-based imagery. Nevertheless, with various physical constraints from the imaging instruments 
themselves, not the least of which is “launch mass” and volume, one needs to be able to trade-off  spatial 
resolution and bandwidth for any remote sensing system.

This suggests that even with optical communications, future imaging systems are unlikely to be able to 
resolve features smaller than 25 cm given constraints on telescope mass and size. This is also the experience 
for civilian Earth Observing satellites where the highest spatial resolution is  from WorldView-3. 
However, there exist computational methods which can enhance the resolution from such sensors using 
techniques successfully applied to date to surveillance and microscopic imagery over many years called 
super-resolution restoration (SRR).

We have developed a novel super-resolution algorithm/pipeline to be able to restore higher resolution 
image from the non-redundant sub-pixel information contained in multiple lower resolution raw remotely 
sensed images. As we show in this paper we demonstrate that with a stack of HiRISE images we can achieve 
up to 5 cm resolution from an orbit altitude of 300 km. With 3D information available from the same sensor 
at 25 cm (using shape-from-shading), this now allows us to interpret the surface formation process in a 
wholly diff erent manner.

The Gotcha-PDE-TV GPT-SRR technique was developed [16] within the EU-FP7 PRoViDE (http://provide-
space.eu) project to obtain improved scientiϐic understanding of the Martian surface using a combination of 
orbital and rover imagery and in future to better support several mission critical engineering rover operations, 
such as landing site selection, path planning, and optical rover localisation. The technique is unique, since 
(a) we not only use sub-pixel information from small translational shifts but also restore pixels on an ortho-
rectiϐied grid from diff erent (comparably large) viewing angles, and are therefore able to achieve a 2–5× 
enhancement in resolution; (b) we use a novel segmentation-based approach to restore diff erent features 
separately; (c) apply a state of the art Gotcha matcher and PDE-TV regularization to provide accurate and 
robust (noise resistant) restoration. GPT-SRR is applicable whenever there exist sub-pixel diff erences and 
there are comparably large view zenith angle diff erences, which is always the case in orbital images, between 
multiple image acquisitions even if taken at diff erent times with diff erent solar illumination conditions. Each 
view is subjected to diff erent atmospheric blurring and scattering but as long as the atmospheric transparency 
is sufϐiciently high, Gotcha-PDE-TV SRR can be applied.

This paper will describe the new Gotcha-PDE-TV algorithm and investigate its current performance. 
The technique will be demonstrated with initial experiments performed using 8 repeat-pass 25 cm HiRISE 
images covering the MER-A (Mars Exploration Rover – http://mars.nasa.gov/mer) Spirit rover traverse in 
Gusev crater in order to resolve a 5 cm Super-resolution restoration (SRR) image of the area. This set of super-
resolution images around the MER-A and MSL track is now being analyzed by colleagues on the MER& MSL 
science teams in association with the rover imagery in order to try to quantify what additional information 
on Martian surface processes can be derived given the 5 times higher spatial resolution compared to HiRISE. 
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Астрономия

This resolution is comparable to rover imagery at a stand-off  range of 5 m from the rover cameras but in our 
case this high spatial resolution  can be simulated from many hundreds of kilometers away 
from the rover traverse. This means that in future, more detailed planetary exploration could be performed 
from orbit, where there are no autonomous rover vehicles available, by ensuring that there are many repeat 
images of the same surface area.

2. Context and reviews

SRR techniques attempt to restore higher resolution images from non-redundant information contained 
in multiple lower resolution images. The basic idea is that each lower resolution image that is captured is a 
decimated, aliased version of the true scene. SRR is used to retrieve the most probable “true scene” that can 
be extracted from these lower resolution images. SRR techniques are applicable if there are repeat images 
taken from (slightly) diff erent positions or viewing angles so that diff erences in alignment between the 
camera and the surface exists. Such diff erences of alignment will introduce additional sub-pixel information 
of the true scene.

Early work on SRR in computer vision was mainly achieved by exploring the shift and aliasing properties 
in the frequency domain [18], but these techniques are restricted in the observation/degradation models they 
can handle. Nowadays, SRR is mostly performed in the spatial domain, mainly for its ϐlexibility to model all 
the diff erent kinds of image degradations encountered. The naive spatial domain approach is interpolation-
restoration, which is a non-iterative forward approach that achieves non-uniform interpolation on pre-
registered low-resolution (LR) images. Forward interpolation based approaches do not guarantee optimality 
of the estimation. Local registration error can easily propagate and will cause gridding artifacts. Unlike 
the interpolation-based approaches, statistical approaches relate the sub-pixel information stochastically 
toward optimal reconstruction. SRR image and registration parameters of LR inputs can both be considered 
as stochastic variables. The inverse process to ϐind out the most probable true scene can be interpreted 
within a full Bayesian framework. In order to resolve the Bayesian formulation, many works [13, 8, 2] have 
followed the Maximum Likelihood (ML) estimator and Maximum a Posteriori (MAP) approaches. To resolve 
ML estimator function requires expensive manipulation of high dimension matrices and therefore a Back-
Projection Function (BPF) is normally applied to simplify the large set of sparse linear equations [7]. The 
ML estimator without regularization is usually very sensitive to noise and registration parameters of LR 
inputs [2]. Therefore current state of the art SRR techniques follow the MAP approaches, but vary in the 
observation models and priors. There are three commonly used priors for solving the MAP equation of SRR. 
The ϐirst one is the Gaussian Markov Random Field (GMRF) [5], which takes the likelihood of the prior in 
the form of a symmetric positive matrix of the derivative operator of LR images, balancing local and spatial 
smoothness. A common criticism of GMRF is its disadvantage in preserving sharp edges in SRR. The second 
approach is the Huber MRF (HMRF), which resolves local smoothness whilst preserving sharp edges using 
the Huber function [13]. The third generic image prior is through Total Variation (TV), which is a commonly 
used image de-noising technique. TV calculates the total amount of change via a Laplacian operator. More 
recent works in SRR employ the TV as a regularization prior. [3] introduced bilateral TV (BTV) for reduced 
computational complexity and improved robustness. [1] proposed an improved regularization method based 
on the coupling of fourth order Partial Diff erential Equation (PDE) and a special shock ϐilter to remove the 
jittering artifacts from TV.

In this paper, we propose a further optimized TV algorithm, called Gotcha-PDE-TV, based on an unique 
adaptive least-squares correlation (ALSC) matcher called P-Gotcha described in [14] which has been 
successfully applied to topographic mapping and co-registration of multi-view imagery from HRSC, CTX and 
HiRISE in [9] http://www.sciencedirect.com/science/article/pii/S0032063315003591 - bib9. This paper will 
demonstrate optimality of the Gotcha-PDE-TV SRR technique by applying the precise sub-pixel motion prior 
in MAP reconstruction focusing of orbital images of Mars. For computational reasons, we do not model all 
the observation parameters such as surface illumination, surface albedo, and camera speciϐications. Instead 
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for Mars images, we model the precise camera orientation/motion, simpliϐied optical blurring eff ects, down-
sampling eff ects, and noise.

3. Algorithm and methods

3.1. MAP SRR model
In a generic SRR model (1), where Yk denotes the k-th LR image, X denotes the HR image. Fk, Hk, Dk, and 

Vk denote the observation parameters, where geometric motion information, optical blurring eff ect, down-
sampling eff ect, and noise encoded for the k-th LR frame, respectively.

                                                                             (1)

where  

Let M denote the observation parameters among LR inputs. The HR image and observation parameters 
can both be regarded as stochastic variables and hence the SRR model can be interpreted within the full 
Bayesian framework (2).

           
(2)

Since X and M are independent:

                                                 (3)

Pr(X) is the prior term on the desired HR image and Pr(M) is a prior term on the geometric motion vec-
tor. Because any pixel value Xij in the reconstruction is highly correlated with their neighbours, we assume 

 is normally distributed. The probability of the observed pixel value in the LR image is given 
in (4) with a zero mean and standard deviation σ.

                                                         (4)

At the current stage, we only deal with a single-sensor (e.g. HiRISE) with LR images captured over a period 
of time. The relative motion for each pixel is calculated to sub-pixel accuracy with respect to an orthorecti-
ϐied image (ORI). Therefore we assume M is given/calculated beforehand, (4) can be simpliϐied to (5), where 
A(X) is the regularization cost represented by a non-negative potential function used to deϐine Pr(X) and λ 
is a regularization parameter for absorbing the variance of the similarity and regularization costs.

                         (5)

In TV regularization, A(X) is measured by the l1 norm of the magnitude of the gradient to preserve 
edges and corners while encouraging local smoothness. Where in (6),  is a gradient operator that can be 
approximated by Laplacian operators.

                                                                  (6)
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Merging (5); (6), the MAP equation can be represented as (7).

                                                   (7)

By applying a 4th order PDE (8) to resolve the minimization problem, the staircase eff ect in TV can be 
minimised.

                                                         (8)

where μ>0, such that:

                                  (9)

In order to prevent the denominator of PDE, i.e. , approaching zero.

3.2. Reconstruction algorithm
To resolve the MAP equation from Eq. (7) requires the “true” value for observation parameter, M. In 

our method, we use a sub-pixel motion map to describe the geometrical correlation for each individual 
pixel between LR images and a reference ORI for the same scene so that each LR pixel can be ϐitted onto an 
interpolated HR grid (for desired resolution scale factor L) as a starting estimation for the steepest descent 
iteration of the minimisation problem of Eq. (8).

In order to get the motion prior close enough to the true value which is essential for the MAP solution, 
we use a progressively weighted ALSC/region growing algorithm to produce sub-pixel 2-channel (dx and dy) 
projection maps for each LR image with respect to the reference ORI. Initial tie-points (TPs) are determined 
using feature points derived from Scaled Invariant Feature Transform (SIFT). General feature based 
registration methods assume that image features detected independently on each image are always correct. 
The repeatability of the detection would be deteriorated when a signiϐicant distortion is involved in a 
matching process. Slight mismatches could have a large impact on constructing the initial High Resolution 
(HR) grid. Therefore, we developed a Mutual Shape Adapted SIFT (MSA-SIFT) algorithm that uses forward 
and backward ALSC to iteratively search for a correct TP by adjusting the shape of the correlation matching 
window as shown in Eq. (10), where Xi is an ALSC searching window starting from the origin of the initial 
TPs. The window can be translated and/or skewed as represented by A.

                                             (10)

The algorithm of MSA-SIFT consists of the following:

(i) Detection of a scale invariant feature and its scale.
(ii) Iterative update of a circular scale invariant region to an elliptical region using a second moment 

matrix.
(iii) Initial normalisation using the result from ii.
(iv) Reϐinement of the result using forward and backward ALSC on both images.
(v) Going back to (iv) until it converges (optional).
(vi) Go back to (ii) until convergence (optional).

TPMSA−SIFT have sub-pixel accuracy and are considered as seed points to iteratively adjust transformation 
and move to the neighbouring points in the P-Gotcha algorithm as described in Eq. (9). Subjective constraints, 

Астрономия

DOI: 10.7256/2453-8817.2017.2.22876



Исследования космоса 2(3) • 2017

70 

©
 N

O
T

A
 B

E
N

E
 (

О
О

О
 “

Н
Б

-М
ед

и
а”

) 
w

w
w

.n
b

p
u

b
li

sh
.c

o
m

При цитировании этой статьи ссылка на doi обязательна

e.g. quality, error, are determined to obtain a motion map for each LR image with respect to an ORI. Each 
pixel value (dx, dy) in the motion map represents the x and y vector pointing to the same interpolated ORI 
grid with scale factor L. Other observation parameters (Hk, Dk, and Vk) for a LR image are projected by the 
geometric motion parameter (Fk) from the motion map to ϐind the minimum squared error (MSE).

In a steepest descent approach for the minimization problem we use Eq. (12) to resolve the PDE 
decomposed MAP Eq. (11).

                               (11)

             (12)

where γ is the step size in the direction of the gradient, FT, HT, and DT is the transpose of the projection 
vector, Point Spread Function (PSF) that is assumed to be a small Gaussian kernel with standard deviation σ to 
be 1, and a down-sampling operator, respectively for the k-th LR image.

Most MAP SRR approaches in computer vision assume a simple projection motion prior to a LR image 
sequence. However, this is not the case in planetary orbital image datasets where motion vectors can vary 
dramatically due to camera viewing angle diff erences. We use a novel back projection scheme that reconstructs 
diff erent areas (S) from the LR images separately with respect to the segmentation from the tiled motion 
vectors with diff erent levels of pixel distance (τ) when compared with the reference ORI, such that:

                                                         (13)

                                                                (14)

where D is the distance of the motion vectors within an area S, such that τS is less than a threshold, T. 
Each LR measurement Yk in Eq. (12) within an area Si will be compared to the degraded estimation of HR 
frame Xn in the n -th steepest descent iteration separately. In such an approach, any area with more features 
(small rocks, edges) will be divided into more reconstruction tiles in order to preserve the features, whilst ϐlat 
featureless areas will be reconstructed jointly to reduce noise and speckle eff ect from a PDE. In other words, 
neighbouring correlations have less eff ect on the ϐine detail of features but have more eff ect on ϐlat feature-
less areas. In addition, with this tiled back projection scheme, the neighbouring pixels outside the deϐined 
area (tile) will not contribute to the SRR within the deϐined area (tile) according to the normal distribution 
assumption of Pr(Y|X,M) in Eq. (4). For ϐlat areas where LR pixels are over-determined, a PSF with larger σ is 
used. For highly featured areas where LR pixels are under-determined, a PSF with a smaller σ is used.

3.3. Method
The current implementation of the proposed Gotcha-PDE-TV SRR algorithm is shown schematically in Fig. 

1. We take roughly aligned overlapping LR images (K) and an ORI (if available) as input to estimate the HR 
image with a given scaling factor (L).
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Fig. 1. Flow diagram of the proposed Gotcha-PDE-TV processing chain.

The processing pipeline (see Fig. 1) starts with a scale invariant feature detection and matching process 
to predict TPs for each LR images with respect to the reference frame. Then an iterative MSA method 
is performed based on the initial TPs to further improve the sub-pixel accuracy followed by a RANSAC 
process for outlier removal. These optimised TPs are then used with a pyramidal version of Gotcha as seed 
points for an ALSC/region growing process until most pixels in the LR images ϐind their optimal sub-pixel 
correspondence with respect to the reference frame. These sub-pixel correspondences are collected to form 
(K) 2-channel motion maps with sub-pixel x and y translation vector encoded. LR pixels, which do not match 
with any position in the reference grid, will be removed from the K-dimensional LR matrix. If a position in 
the HR grid does not have any corresponding motion vector from all (K) motion maps, this HR pixel will be 
propagated by its neighbouring HR pixels.

The motion maps provide the initial degradation information of F in the similarity measurement term 
of the MAP estimation. LR images and the reference ORI are resized by the deϐined scaling factor L and are 
segmented to (S) tiles according to a given threshold (T) of the maximum diff erence of the magnitude of the 
distance of the motion vectors.

The next step is resolving the MAP equation using the following method:

(i) For the same area, each tile (τ) of each LR image (k) is projected with motion vector (F), convolved with 
PSF (H) which is assumed to be a small Gaussian kernel with various standard deviation (σ) according 
to the size of segments (S), down-sampled (D) with the deϐined scaling factor (L) and compared with 
its estimated HR image tile sequentially.

Астрономия
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(ii) Go back to (i) for the next image (k) until all images converge.

(iii) Add the transposed diff erence vector (FT, HT, DT) for the image tile (k, τ).

(iv) Add the smoothness term and decompose the TV regularization term with the 4th order PDE.

(v) Go back to (i) for the next steepest descent iteration until it converges.

(vi) Collect the HR result for this tile (τi) and go back to (i) for the next tile (τi+1) until all segments (S) 
converge.

(vii) Collect the results for all HR segments (S) and reconstruct the full HR grid.

(viii) Finally a series of post-processing is performed based on the HR reconstruction including noise ϐiltering 
and deblurring.

This implementation includes several tiling and pyramidal approaches in order to decrease the processing 
time. The potential of parallel processing for the ALSC/region growing, tiled back projection and regularization 
is indicated in the above processing chain (see Fig. 1). A porting of the current implementation to a network of 
high speed Graphics Processing Unit (GPU) processor should be feasible as there are existing implementations 
[11, 6, 12] for most of the core parts, i.e. seeded Region Growing, SIFT, TV) to port onto a GPU. If we are able 
to achieve order(s) of magnitude increase from parallel processing in throughput then we will eventually 
be able to process full HiRISE scenes. Consequently, our ability will be enhanced to study very ϐine-scale 
processes from Martian surfaces such as gulley and RSL formation and address much better the question as 
to whether these originate with liquid water. Currently, HiRISE has acquired, up to the end of Mars Year 31, 
around 400 areas (0.02% of the ≈ 145 Msq. km). Martian surface area assuming a typical HiRISE scene size 
of 6×12 km) with four or more repeat coverages [15].

4. Experimental results

Initial experiments have been performed using the elaborated Gotcha-PDE-TV algorithm for 8 repeat-pass 
25 cm HiRISE images listed in Table 1 covering the MER-A Spirit rover traverse in Gusev Crater to resolve a 
5 cm SR image of the area as shown in Fig. 2 and the zoomed-in view for randomly picked places from Sol 524 
to Sol 580 in Fig. 14 in comparison with 25 cm HiRISE image for the same area shown in Fig. 13.

Table 1
LR inputs of 8 repeat-pass HiRISE images

ID Acquisition Date

LR1 ESP-011943-1650 12 February 2009

LR2 ESP-016677-1650 15 February 2010

LR3 ESP-019301-1650 8 September 2010

LR4 ESP-025393-1650 27 December 2011

LR5 ESP-025815-1655 29 January 2012

LR6 PSP-001513-1655** 22 November 2006

LR7 PSP-001777-1650* 12 December 2006

LR8 PSP-010097-1655 21 September 2008
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Fig. 2. MER-A SRR mosaic covering the whole rover traverse shown in ArcGIS®.

Owing to the current very lengthy computation times of each SRR image tile (12–24 h depending on 
diff erent processing parameters, for a 2048×1024 tile with 8 input LR images running on a 16 core, 8 GB 
RAM computer), it is not yet feasible to apply SRR to a full HiRISE image. Therefore, a set of smaller image 
tiles has been processed along the MER-A rover track and their coverage and the corresponding tiles are 
shown in Fig. 2.

The reference ORI for the SRR is created using the left image of the stereo pair PSP-001513-1655 ** and 
PSP-001777-1650 * described in [17] http://www.sciencedirect.com/science/article/pii/S0032063315003591 
- bib18. A comparison between one of the LR images and HR images can be seen side by side for 3 randomly 
picked places (A, B, C) within the Homeplate area SRR view in Fig. 3 and are shown individually in Fig. 4, 
Fig. 5; Fig. 6.

Fig. 4 shows that the proposed SRR algorithm is able to bring out individual rocks (size ≤ 75 см), which are 
not clear or unrecognizable in the original HiRISE image. This is essential for rock detection/classiϐication and 
examining surface rock distribution for understanding the surface roughness. From a better understanding 
of the rock distribution, an optimal path planning can be calculated to better support the engineering teams 
of future surface missions. For the most recent rover, [4] showed down-selection of putative landing sites 
had to meet the criterion that rock height of less than 0.5% probability of at least one  high rock in 
a 4 m2 area, equivalent to a rock abundance of <8%.
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Fig. 3. A portion of the 5 cm MER-A SRR image mosaic around the Homeplate area, the most south-east tile 
shown in Fig. 2, showing locations of the 3 selected areas shown at higher resolution in Fig. 4, Fig. 5; Fig. 6.

Fig. 4. Comparison between 25 cm HiRISE ORI image (left) and 5 cm SRR image (right) for area (A).
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Fig. 5. Comparison between 25 cm HiRISE ORI image (left) and 5 cm SRR image (right) for area (B).

Fig. 5 shows a portion of SRR of mixed features including rocks as small as 10–50 cm, dunes, and hill 
slopes. This provides important knowledge on surface morphology and deposition study. Such enhanced 
structural/linear features will also improve ground-to-orbit data fusion, i.e. Navcam to HiRISE co-registration 
as described in [17], which will signiϐicantly improve an optimal rover localisation.

Fig. 6 shows the optimality of the SRR algorithm in preserving sharp edges. The restoration of sharper 
edges is important for studying sedimentary deposition and surface change monitoring.

Furthermore, we are able to enhance and composite rover tracks that appeared in diff erent HiRISE 
images by using diff erent parameters for each LR image depending on the diff erent desired area, as shown 
in Fig. 7. In comparison of the enhanced and composited rover track with the rover imagery shown in Fig. 8, 
we are able to perform high accuracy rover localisation as well as validate the spatial resolution, in this case 
by measuring the outer-wheel and inner-wheel spacing shown in Fig. 9. The maximum diff erence between 
the rover track outer spacing from SRR image and Navcam orthorectiϐied mosaic is within 8 cm (1.6 pixels 
in the SRR image), which is subject to Navcam orthorectiϐication distortion and possible Martian surface 
change over a 5 year long period.

In addition, SRR imagery is applicable to improve knowledge of rock size distributions, which is critical 
for understanding the geological and geomorphic history of a surface [4] as well as the potential navigability 
of the surface. Fig. 10 shows that in 25 cm HiRISE images, rocks less than 150 cm diameter are barely visible 
and are hard to detect, whereas in 5 cm SRR, rocks larger than 30 cm diameter are fully resolved shown in 
Fig. 12.
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Fig. 6. Comparison between 25 cm HiRISE image (left) and 5 cm SRR image (right) for area (C).

Fig. 7. Comparison between 25 cm HiRISE ORI image (left) and 5 cm SRR 
image (right) showing composited enhanced rover tracks.
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Fig. 8. Comparison between rover track compositing in SRR image and JPL vertical projected Navcam 
RDR (2 nnd95 ilfawvrtz0p1725l000 m2 and 2 nnd54 ilfavvrtqwp1605l000 m2) in Homeplate area.

For an area within the HiRISE image and a corresponding SRR image around an impact crater near the 
MER-A traverse Sol 150 and 151, rocks are automatically detected based on the Mean-shift segmentation 
and Support Vector Machine (SVM) classiϐier [16]. For rocks with diameters larger than 150 cm there are 
22 detected from the original HiRISE image and only 1 rock detected with a diameter between 50 cm and 
150 cm. On the other hand, in the SRR image, Fig. 12 shows that there were 33 rocks with diameters larger 
than 150 cm, 111 rocks with diameters between 50 cm and 150 cm, and 9 rocks with diameters between 
30 cm and 50 cm. We have also compared the rock detection results, shown in Fig. 11, on the enlarged 
(bilinear interpolation) and high-pass ϐiltered HiRISE image. Although some rocks with diameters larger 
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Fig. 9. Comparison between specially enhanced rover track composition in SRR 
image and orthorectiϔied rover Navcam mosaic in Homeplate area.
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than 150 cm were able to be individually detected (viz. they were detected as a single rock in the original 
HiRISE image) and also some blurred rocks with diameters between 50 cm and 150 cm have been enhanced, 
there were still a very large number of rocks which cannot be resolved by simple high-pass ϐiltering. Table 
2 summarises these results showing that there are large numbers of rocks, which are not clear enough for 
automated detection/classiϐication or manual recognition in the original HiRISE image. However, with the 
SRR, a much greater number of rocks can be detected and therefore provide stronger evidence to support 
an application such as the selection of a future landing site.

Table 2
Accumulated number of rocks in HiRISE and SRR image

Diameter of rocks Num of rocks (HiRISE) Num of rocks (ϐiltered) Num of rocks (SRR)

22 25 33

23 31 144

23 31 153

More SRR experiments and processing have also been performed (not shown here) for MER-B Victoria 
Crater, Endurance Crater, Santa-Maria Crater and the entire MSL rover traverse to die. Some of the SRR 
results have been integrated into an interactive Web-GIS system developed by partners at the University of 
Nottingham within the PRoViDE project, called PRoGIS7, for visualisation in a multi-resolution co-registered 
context using SRR image, HiRISE, CTX and HRSC which is designed to serve public outreach and educational 

Fig. 10. Automatically detected rocks (labeled green) of 25 cm HiRISE image (PSP-001513-1655) 
with 20 pixel grid (5 m) around an impact crater close to MER-A traverse 

at ~ (175.51045 deg, - 14.58461 deg).
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Fig. 11. Automatically detected rocks (labeled green) of high-pass ϔiltered HiRISE image (PSP-001513-1655) with 
20 pixel grid (1 m) around the same impact crater close to MER-A traverse at ~ (175.51045 deg, - 14.58461 deg).

Fig. 12. Automatically detected rocks (labeled green) of 5 cm SRR image with 20 pixel grid (1 m) 
around the same impact crater close to MER-A traverse at ~ (175.51045 deg, –  14.58461 deg).

purposes [10]. The greatest single limitation to the existing technique is the slow computational speed, 
in addition to ensuring that there are sufϐicient repeat images (5–10) of sufϐicient clarity/atmospheric 
transparency.
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Fig. 13. A portion of 25 cm MER-A HiRISE image with rover traverse from Sol 524 to Sol 580.

5. Conclusions and future work

Any planetary geologist or geo-morphologist is likely to have a strong interest in exploiting the highest 
possible resolution 3D image dataset. SRR will assist them greatly in formulating and testing hypotheses 
about planetary surface processes, as they will be able to apply their knowledge and understanding based on 
their terrestrial ϐieldwork. The high spatial resolution imaging data is an active driver for many applications, 
such as studying surface processes, which are not visible or not clear enough via known low-resolution data. 
Geologists can achieve more reliable classiϐication and inference from super-resolution restored features 
such as rocks, sedimentary layers, cliff  cross-cutting proϐile, etc.

Fig. 14. A portion of 5 cm MER-A SRR image mosaic from 8 repeat-pass HiRISE 
images showing the same place from Sol 524 to Sol 580.
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This paper describes our novel SRR algorithm, called Gotcha-PDE-TV (GPT-SRR), to address the recon-
struction of ϐine-scale details from multi-frame repeat-pass orbital imagery. We show use of an innovative 
tiled MAP approach to restore diff erent feature from LR images. We exploit the accurate sub-pixel motion 
estimation using Gotcha and robust PDE based TV regularization process. The technique has been demon-
strated here with experiments on 8 overlapping 25 cm MRO HiRISE images covering the MER-A Spirit rover 
traverse to resolve 5 times higher spatial resolution. We do not yet know, and are not able to test, owing to 
the huge computational time, how many images yield what resolution but determined this heuristically at 
the 5 cm shown for the 8 input 25 cm images.

Gotcha-PDE-TV SRR is applicable whenever there exist sub-pixel diff erences, which is always likely to 
be the case for repeat orbital images, even if taken at diff erent times with diff erent viewing (zenith) and 
solar illumination (azimuth) conditions. We are not able to test this with diff erent solar zenith as MRO is in 
a ϐixed repeat orbit. Each view is subject to diff erent atmospheric blurring and scattering but as long as the 
atmospheric transparency is sufϐiciently high (clear), Gotcha-PDE-TV GPT-SRR can be applied.

We aim to process all available image datasets in future where we have repeated multi-view imagery 
starting with HiRISE ϐirst and then apply these techniques to HRSC, CTX, HiRISE, THEMIS, MOC and Viking 
Orbiter into geo-referenced SR mapped datasets after the proposed GPU porting. We also plan to apply such 
techniques to the retrieval of 3D heights where we have multiple stereo-pairs available. These geo-referenced 
SRR datasets will greatly support the geological and morphological analysis and monitoring of Martian sur-
face processes especially change detection features in future planetary research. They can also be applied 
to landing site selection to spot surfaces which may cause difϐiculties for any future rover as well as provide 
a much better dataset for subsequent geological and geomorphological analysis.

We believe that the technology developed here has huge potential, not only to other Solar System solid 
earth targets but also to the design of future missions, which will still be severely limited by telecommunica-
tions bandwidth but also by light travel time. Transmitting back long video sequences of LR imagery, which 
could then be employed for SRR, could result in substantially higher scientiϐic returns from orbital missions. 
It may also be applied to space telescopic images of objects outside our Solar System such as exoplanets.

Статья впервые опубликована:
Planetary and SpaceScience, 2016, № 21, pp.103–114
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