Системы имитационного моделирования
Правильная ссылка на статью:
Мальцева Н.К., Попова В.О., Сыров А.А.
Поиск исходных событий для оценки безопасности операций по перегрузке ядерного топлива на АЭС
// Программные системы и вычислительные методы.
2022. № 1.
С. 1-8.
DOI: 10.7256/2454-0714.2022.1.19323 URL: https://nbpublish.com/library_read_article.php?id=19323
Аннотация:
Актуальность выбранного вопроса, а именно, безопасность операций по перегрузке ядерного топлива (РБМК), связана с особенностями эксплуатации блоков РБМК. Одним из самых опасных, с точки зрения аварийности на современных АЭС, является процесс перегрузки ядерного топлива. Во время проведения операций по перестановке топливных кассет существует риск повреждения топлива, и, как следствие, вероятность выхода радиоактивных веществ за допустимые пределы. Процесс перегрузки РБМК при нахождении реактора на мощности состоит из очень большого количества сложных операций, характеризующихся множеством параметров. Несоблюдение критериев выполнения операций, выход значений параметров за допустимые диапазоны с большой вероятностью может привести к аварии. В настоящей статье рассматривается возможность применения формализованного подхода для выявления исходных событий, которые могут привести к возникновению аварий, с целью формирования необходимого и достаточного набора защит. Формальный подход позволит определить избыточность в наборах защит на действующих блоках, а так же поможет выявить аварийные ситуации, защиты для которых не предусмотрены. Разработан системный подход, позволяющий полноценно оценить аварийность структурно-сложных систем. Адаптация метода применительно к РЗМ позволила систематизировать поиск исходных событий, приводящих к нежелательным событиям и, как следствие, позволяет оптимизировать количество защит, что приведет к повышению надежности работы системы, а также упрощает процесс эксплуатации и может уменьшить время рабочего цикла контроллера на обработку защит.
Ключевые слова:
перегрузка ядерного топлива, эксплуатация блока, водо-водяной энергетический реактор, канальный реактор, исходное событие, экспертное мнение, Атомная электростанция, формальный подход, анализ безопасности, метод HAZOP
Abstract:
The relevance of the topic of the safety of nuclear refueling operations is associated with the specificity of exploitation of RBMK units. One of the most hazardous, from the perspective of accidents at modern nuclear power plants, is the process of nuclear fuel reloading. The operations on rearrangement of fuel cartridges entail the risk of fuel damage, and thus, the likelihood of the release of radioactive substances exceeding the permissible limits. The process of reloading RBMK, if the reactor is at full capacity, consists of the vast number of complex operations characterized by a range parameters. Non-observance of the criteria for carrying out operations, or if the parameter values exceed permissible limits, with high probability leads to an accident. This article explores the possibility of application of formalized approach towards determination of the baseline events that may cause accidents for the purpose of the development of essential protection instruments. The formal approach would allow detecting the excessiveness in protection instruments on the existing blocks, as well as revealing the accident situations that cannot be prevented using these protection instruments. The author formulated systemic approach towards comprehensive assessment of the accident rate of structurally complex systems. Adaptation of this method relative to REM allows systematizing the search for baseline vents that entail uncontrolled situations, as well as optimizing the protection instruments that would ultimately enhance reliability of the system, simplify the exploitation process, and reduce the time of operating cycle of the controller for processing of the protection.
Keywords:
expert commentary, initiator, High Power Channel-type Reactor, Water-Water Energetic Reactor, unit operation, refueling, Atomic Power Station, token approach, plant safety analysis, HAZOP method