Никитин П.В., Горохова Р.И. —
Анализ современных интеллектуальных методов защиты критической информационной инфраструктуры
// Вопросы безопасности. – 2024. – № 3.
– С. 14 - 38.
DOI: 10.25136/2409-7543.2024.3.69980
URL: https://e-notabene.ru/nb/article_69980.html
Читать статью
Аннотация: Критическая информационная инфраструктура (КИИ), в том числе и финансового сектора, играет ключевую роль в обеспечении устойчивого функционирования экономических систем и финансовой стабильности государств. Однако растущая цифровизация финансовой отрасли и внедрение инновационных технологий открывают новые векторы атак для злоумышленников. Современные кибератаки становятся все более изощренными, а традиционные средства защиты оказываются неэффективными против новых, ранее неизвестных угроз. Возникает острая необходимость в более гибких и интеллектуальных системах обеспечения кибербезопасности.
Таким образом, предметом исследования являются современные интеллектуальные методы и технологии защиты критической информационной инфраструктуры (КИИ) от кибератак. Объектом исследования выступают методы и средства обеспечения защиты критической информационной инфраструктуры с использованием технологий искусственного интеллекта и машинного обучения. Методологической основой данного исследования является комплексный анализ научной литературы, посвященной применению интеллектуальных методов и технологий для защиты критической информационной инфраструктуры и проведенный авторами эксперимент по обнаружению финансовых мошенничеств средствами искусственного интеллекта. В ходе проведенного обзора и критического анализа соответствующих научных публикаций были выявлены ключевые проблемы и нерешенные задачи, требующие дальнейших научных изысканий и практических разработок в данной предметной области, которые были доказаны экспериментально.
Основные направления научной новизны:
1. Детальное рассмотрение перспективных подходов на основе технологий искусственного интеллекта и машинного обучения для обеспечения эффективной защиты КИИ организаций от современных сложных кибератак.
2. Выявление и анализ ряда ключевых научно-технических проблем, требующих решения для повышения надежности, интерпретируемости и доверия к интеллектуальным системам кибербезопасности, включая вопросы обеспечения робастности к атакам, активного онлайн-обучения, федеративной и дифференциально-приватной обработки данных.
3. Экспериментальная проверка выявленных проблем с использованием средств машинного и глубокого обучения.
4. Определение перспективных направлений дальнейших исследований и разработок в области применения специализированных методов безопасного и доверенного ИИ для защиты критически важной финансовой инфраструктуры.
Таким образом, данное исследование вносит значимый вклад в развитие научно-методического аппарата и практических решений по применению интеллектуальных методов для обеспечения кибербезопасности.
Abstract: Critical information infrastructure (CII), including the financial sector, plays a key role in ensuring the sustainable functioning of economic systems and the financial stability of States. However, the growing digitalization of the financial industry and the introduction of innovative technologies are opening up new attack vectors for attackers. Modern cyber attacks are becoming more sophisticated, and traditional defenses are proving ineffective against new, previously unknown threats. There is an urgent need for more flexible and intelligent cybersecurity systems.
Thus, the subject of the study is modern intelligent methods and technologies for protecting critical information infrastructure (CII) from cyber attacks. The object of the research is methods and means of ensuring the protection of critical information infrastructure using artificial intelligence and machine learning technologies. The methodological basis of this study is a comprehensive analysis of the scientific literature on the use of intelligent methods and technologies to protect critical information infrastructure. During the review and critical analysis of relevant scientific publications, key problems and unresolved tasks requiring further scientific research and practical developments in this subject area were identified. This methodological approach allowed us to form a holistic view of the current state and prospects for the development of intelligent cybersecurity tools for critical financial systems, as well as to identify priority areas for further research. The main directions of scientific novelty of this research are:
1. A detailed review of promising approaches based on artificial intelligence and machine learning technologies to ensure effective protection of CII organizations from modern complex cyber attacks.
2. Identification and analysis of a number of key scientific and technical problems that need to be solved to increase reliability, interpretability and trust in intelligent cybersecurity systems, including issues of robustness to attacks, active online learning, federated and differential private data processing.
3. Identification of promising areas for further research and development in the field of application of specialized methods of secure and trusted AI to protect critical financial infrastructure.
Thus, this research makes a significant contribution to the development of scientific and methodological apparatus and practical solutions for the use of intelligent methods to ensure cybersecurity.
Никитин П.В., Долгов В.И., Горохова Р.И., Коровин Д.И., Бахтина Е.Ю. —
Методика оценки важности признаков при анализе выполнения государственных контрактов
// Национальная безопасность / nota bene. – 2023. – № 4.
– С. 1 - 18.
DOI: 10.7256/2454-0668.2023.4.44013
URL: https://e-notabene.ru/nbmag/article_44013.html
Читать статью
Аннотация: Предметом исследования статьи является оценка рисков выполнения государственных контрактов. Объектом исследования является процесс анализа и оценки выполнения государственных контрактов. Исследование направлено на разработку методики, определяющей важность и значимость признаков, влияющих на риск невыполнения государственных контрактов. Применялись методы исследования: анализ данных, для обнаружения связей и зависимостей между различными признаками и риском невыполнения государственных контрактов; статистический анализ, для получения оценки влияния каждого признака на риск невыполнения контрактов и ранжирования их по степени важности; машинное обучение, для прогнозирования риска невыполнения государственных контрактов; экспертные оценки, для учета контекстуальных факторов и особенностей, их влияния на важность признаков. Основными выводами проведенного исследования являются представленные методики оценки важности признаков при анализе выполнения государственных контрактов, путем использования данных из различных источников, включая реестр государственных закупок единой информационной системы (ЕИС), реестр недобросовестных поставщиков (РНП) ЕИС и информационную систему СПАРК. Авторам удалось достичь высокой точности предсказаний (более 97%) и осуществить анализ наиболее важных и значимых признаков. Научная новизна заключается в том, что полученные результаты позволяют выявить и проанализировать факторы из трех информационных систем, оказывающие влияние на риски невыполнения государственных контрактов. Таким образом, данное исследование является ценным и важным в своей области, что способствует разработке более эффективных методов управления рисками и повышению эффективности реализации государственных контрактов. Полученные результаты позволяют выделить факторы, оказывающие наибольшее влияние на риски невыполнения контрактов, что делает исследование ценным и важным в данной области.
Abstract: The subject of the research is assessing the risks of performing government contracts. The object of the study is the process of analysis and evaluation of the implementation of government contracts. The study is aimed at developing a methodology that determines the importance and significance of signs that influence the risk of non-fulfillment of government contracts. Research methods were used: data analysis to detect connections and dependencies between various characteristics and the risk of non-fulfillment of government contracts; statistical analysis to obtain an assessment of the impact of each characteristic on the risk of non-fulfillment of contracts and ranking them in order of importance; machine learning to predict the risk of non-fulfillment of government contracts; expert assessments to take into account contextual factors and features, their impact on the importance of features. The main conclusions of the study are the presented methods for assessing the importance of features when analyzing the implementation of government contracts, by using data from various sources, including the register of public procurement of the unified information system (UIS), the register of unscrupulous suppliers (RNP) of the EIS and the SPARK information system. The authors managed to achieve high prediction accuracy (more than 97%) and analyze the most important and significant features. The scientific novelty lies in the fact that the results obtained make it possible to identify and analyze factors from three information systems that influence the risks of non-fulfillment of government contracts. Thus, this study is valuable and important in its field, which contributes to the development of more effective risk management methods and increased efficiency in the implementation of government contracts. The results obtained allow us to identify the factors that have the greatest impact on the risks of non-fulfillment of contracts, which makes the study valuable and important in this area.
Никитин П.В., Горохова Р.И., Бахтина Е.Ю., Долгов В.И., Коровин Д.И. —
Алгоритмы извлечения информации из проблемно-ориентированных текстов на примере государственных контрактов
// Вопросы безопасности. – 2023. – № 3.
– С. 1 - 10.
DOI: 10.25136/2409-7543.2023.3.43543
URL: https://e-notabene.ru/nb/article_43543.html
Читать статью
Аннотация: Исследование направлено на решение проблемы исполнения государственных контрактов, важности использования неструктурированной информации и возможных методов анализа для улучшения контроля и управления этим процессом. Исполнение государственных контрактов имеет прямое влияние на безопасность страны, ее интересы, экономику и политическую стабильность. Правильное выполнение этих контрактов способствует защите национальных интересов и обеспечивает безопасность страны во всех смыслах. Объектом исследования являются алгоритмы, используемые для извлечения информации из текстов. Данные алгоритмы включают в себя технологии машинного обучения и обработку естественного языка. Они способны автоматически находить и структурировать различные сущности и данные из государственных контрактов. Научной новизной данного исследования является учет неструктурированной информации в анализе исполнения государственных контрактов. Авторы обратили внимание на проблемно-ориентированные тексты в документации контрактов и предложили анализировать их числовыми индикаторами для оценки текущего состояния контракта. Таким образом, был внесён вклад в развитие методов анализа государственных контрактов путем учета неструктурированной информации. Предложенные методы анализа проблемно-ориентированных текстов с использованием машинного обучения. Этот подход может значительно улучшить оценку и управление исполнением государственных контрактов. Результаты интерпретации проблемно-ориентированных текстов могут использоваться для оптимизации модели оценки риска исполнения государственного контракта, а также повышения ее точности и эффективности.
Abstract: The research is aimed at solving the problem of the execution of government contracts, the importance of using unstructured information and possible methods of analysis to improve the control and management of this process. The execution of government contracts has a direct impact on the security of the country, its interests, economy and political stability. Proper execution of these contracts contributes to the protection of national interests and ensures the security of the country in every sense. The object of research is algorithms used to extract information from texts. These algorithms include machine learning technologies and natural language processing. They are able to automatically find and structure various entities and data from government contracts. The scientific novelty of this study is the accounting of unstructured information in the analysis of the execution of government contracts. The authors drew attention to the problem-oriented texts in the contract documentation and suggested analyzing them with numerical indicators to assess the current state of the contract. Thus, a contribution was made to the development of methods for analyzing government contracts by taking into account unstructured information. The proposed methods for analyzing problem-oriented texts using machine learning. This approach can significantly improve the evaluation and management of the execution of government contracts. The results of the interpretation of problem-oriented texts can be used to optimize the risk assessment model for the execution of a government contract, as well as to increase its accuracy and efficiency.
Никитин П.В., Осипов А.В., Плешакова Е.С., Корчагин С.А., Горохова Р.И., Гатауллин С.Т. —
Распознавание эмоций по аудио сигналам как один из способов борьбы с телефонным мошенничеством
// Программные системы и вычислительные методы. – 2022. – № 3.
– С. 1 - 13.
DOI: 10.7256/2454-0714.2022.3.38674
URL: https://e-notabene.ru/itmag/article_38674.html
Читать статью
Аннотация: Актуальность исследования продиктована современным состоянием в области телефонного мошенничества. Согласно исследованиям, проводимые «Лабораторией Касперского» доля пользователей, столкнувшихся весной 2022 года с различными нежелательными, спам-звонками, была на уровне 71%. Предметом исследования являются технологии машинного и глубокого обучения для определения эмоций по тембру голоса. Авторами подробно рассматривают такие аспекты как: создание размеченного датасета; преобразование звукового формата WAV в числовой вид, удобный для быстрой обработки; методам машинного обучения для решения задачи многоклассовой классификации; построению и оптимизации архитектуры нейросети, для определения эмоций в реальном времени. Особым вкладом в исследование темы является то, что авторами был реализован быстрый способ преобразования звуковых форматов в числовые мел-кепстральные коэффициенты, что значительно повысило скорость обработки данных, практически не пожертвовав их информативностью. В следствии этого обучение моделей алгоритмами машинного обучения происходило быстро и качественно. Особо отметим, что была смоделирована архитектура сверточной нейронной сети, которая позволила получить качество обучения модели до 98%. Модель получилась легковесной и была взята за основу обучения модели по определению эмоций в реальном времени. Результаты работы модели в реальном времени были сопоставимы с результатами обученной модели. Разработанные алгоритмы могут быть внедрены в работы сотовых операторов или банков в борьбе с телефонным мошенничеством. Статья подготовлена в рамках государственного задания Правительства Российской Федерации Финансовому университету на 2022 год по теме «Модели и методы распознавания текстов в системах противодействия телефонному мошенничеству» (ВТК-ГЗ-ПИ-30-2022).
Abstract: The relevance of the study is dictated by the current state in the field of telephone fraud. According to research conducted by Kaspersky Lab, the share of users who encountered various unwanted spam calls in the spring of 2022 was at the level of 71%. The subject of the research is machine learning and deep learning technologies for determining emotions by the timbre of the voice. The authors consider in detail such aspects as: the creation of a marked-up dataset; the conversion of WAV audio format into a numerical form convenient for fast processing; machine learning methods for solving the problem of multiclass classification; the construction and optimization of neural network architecture to determine emotions in real time. A special contribution to the study of the topic is that the authors implemented a fast method of conversion sound formats into numerical coefficients, which significantly increased the speed of data processing, practically without sacrificing their informativeness. As a result, the models were trained by machine learning algorithms quickly and efficiently. It should be particularly noted that the architecture of a convolutional neural network was modeled, which allowed to obtain the quality of model training up to 98%. The model turned out to be lightweight and was taken as the basis for training the model to determine emotions in real time. The results of the real-time operation of the model were comparable with the results of the trained model. The developed algorithms can be implemented in the work of mobile operators or banks in the fight against telephone fraud.
The article was prepared as part of the state assignment of the Government of the Russian Federation to the Financial University for 2022 on the topic "Models and methods of text recognition in anti-telephone fraud systems" (VTK-GZ-PI-30-2022).
Никитин П.В. —
Повышение эффективности обучению физике средствами факультатива "Физические основы информационной безопасности"
// Современное образование. – 2020. – № 2.
– С. 28 - 42.
DOI: 10.25136/2409-8736.2020.2.33254
URL: https://e-notabene.ru/pp/article_33254.html
Читать статью
Аннотация: Объектом исследования является повышение мотивации обучающихся к изучению физики, как одной из наиболее сложных наук школьного курса. Предметом исследования является разработанный автором факультатив "Физические основы информационной безопасности", основанный на междисциплинарной интеграции таких дисциплин как физика, информатика, информационная безопасность. Автором проведен большой анализ школьных учебников по физике и научно-методических источников литературы по информационной безопасности, выделены соприкасающиеся темы и на их основе разработаны лабораторные работы. Особое место автор уделяет методическим вопросам проведения данного факультатива. Обучение строится на применении метода проблемного обучения, как оптимального метода поиска и получения новых знаний, активной учебной деятельности. Научная новизна исследования заключается в разработке факультатива "Физические основы информационной безопасности", который имеет прикладную направленность. Лабораторные работы разработаны автором так, что учащиеся знакомятся с физическими законами в ходе их выполнения, то есть вначале видят, как "это работает", а после делают выводы в виде формул, после чего решают теоретические задачи по данным темам, понимая вся глубину. Данный факультатив зарегистрирован в Роспатенте как база данных "Электронный образовательный ресурс по дисциплине Физические основы информационной безопасности". Особое внимание автором уделено внедрению данного курса в учебный процесс, описана методическая система обучения и описан педагогический эксперимент, который доказывает эффективность данного курса.
Abstract: The object of this research is the increase in motivation of students towards learning physics as one of the most complex sciences of school curriculum. The subject of this research is the elective course of “Physics Fundamentals of Information Security” developed by the author, based on the cross-disciplinary integration of such disciplines as physics, informatics, and information security. An extensive analysis is conducted on textbooks on physics and scientific methodical sources of literature on information security. Special attention is given to methodological questions of teaching this elective course, structured on application of the method of problem-based learning as an optimal method for search and acquisition of new knowledge and active learning activity. The scientific novelty consists in development of the elective course “Physics Fundamentals of Information Security”, which has applied aim. The laboratory works developed by the author in such way that the students learn the laws of physics in the course of completing the research. They first see “how it works”, and then make conclusions as formulas, after which they solve the theoretical tasks on these topics, understanding entirety of the depth. This course is registered in Rospatent as the database Electronic Educational Resource on the Discipline “Physics Fundamentals of Information Security”. The author pays particular attention to implementation of this course into educational process, as well as describes the methodological system of teaching and the pedagogical experiment that proves the effectiveness of this course.