Фролов Д.М., Селиверстов Ю.Г., Кошурников А.В., Гагарин В.Е., Николаева Е.С. —
Использование машинного обучения для классификации стратиграфических слоев снежной толщи по данным устройства snow micro pen
// Арктика и Антарктика. – 2024. – № 1.
– С. 1 - 11.
DOI: 10.7256/2453-8922.2024.1.69404
URL: https://e-notabene.ru/arctic/article_69404.html
Читать статью
Аннотация: Наблюдение за снежным покровом на площадке метеообсерватории сотрудниками географического факультета МГУ ведутся уже длительное время. В статье описываются особенности снегонакопления и стратиграфических исследований. В момент пришедшего в ночь с 14 на 15 декабря 2023 года в Москву третьего с начала снегонакопления циклона, была большая высота сугробов – на метеостанции ВДНХ высота снежного покрова составляла 31 см. За сутки до 15 декабря добавилось ещё 7 см и цифра 38 см стала рекордно большой. На метеостанции МГУ фиксировалась отметка в 49 см. Температура воздуха при этом к вечеру воскресенья 17 декабря поднялась и в последующие дни колебалась от 0 до +2 градусов. Последовала долгая оттепель, дождь и снеготаяние. На 21 декабря на метеостанции ВДНХ снежный покров осел до 24 см (то есть на 15 см), на метеообсерватории МГУ снежный покров осел до 28,5 см (с 49 см – почти на 20,5 см). Трудности классификации слоёв в снежной толще исследовались и исследуется многими практикующими метеорологами, что также рассмотрено в данной работе. Были использованы методы искусственного интеллекта (ИИ) для классификации стратиграфических слоев снежной толщи по данным измерений устройства snow micro pen. Получающиеся в результате метаморфизма формы ледяных кристаллов в снежной толще (округлые–>огранённые–>талые) различаются как по плотности, так и по параметрам, получаемым в результате обработки данных прибора Snowmicropen (MPF(N) – средняя сила сопротивления SD(N)- её стандартное отклонение, и cv- её ковариация). Это даёт возможность кластеризации обработанных данных прибора и произведения типизации новых данных измерений без привлечения результатов непосредственного ручного шурфования. Были обработаны полученные от прибора данные, и путем сравнения с данными непосредственного шурфования снега, делалось сопоставление классифицированных стратиграфических слоев снежной толщи. В дальнейшем по имеющимся классифицированным данным прибора стратиграфических слоев снежной толщи методом кластеризации K-ближайших соседей оказалось возможным производить классификацию стратиграфических слоев по новым полученным данным прибора без привлечения дополнительного ручного шурфования.
Abstract: The observation of snow cover by the staff of the Geographical Faculty of Moscow State University of the meteorological observatory has long been researched. This article describes the snow accumulation features and the snow cover's stratigraphy. The third cyclone arrived in Moscow on the night of December 14. There had been a large number of snowdrifts since the beginning of the snow accumulation, and the 49 cm mark was recorded at the MSU weather station. The difficulties of classifying layers in the snow column have been investigated by many glaciologists, something that is also considered in this paper. Machine learning methods were used to classify stratigraphic layers in the snow column according to measurements from the snow micro pen device. The ice crystal shapes within the snow column, resulting from metamorphism (rounded, faceted, thawed), exhibit variations in both density and parameters derived from the snow micro pen device data processing. Specifically, MPF(N) represents the average resistance force, SD(N) denotes its standard deviation, and cv signifies its covariance. This diversity allows for the categorization of processed device data and the incorporation of new measurement data without relying on direct manual drilling results.
The obtained device data underwent thorough processing. Through comparison with data from direct snow stratigraphy surveys, the stratigraphic layers of the snow column were classified. Subsequently, utilizing the classified data of the device's stratigraphic layers, K-nearest neighbors clustering enabled the classification of new data obtained from the device without the need for additional manual surveys in the future.