Игнатенко А.М., Макарова И.Л., Копырин А.С. —
Методы подготовки данных к анализу слабоструктурированных временных рядов
// Программные системы и вычислительные методы. – 2019. – № 4.
– С. 87 - 94.
DOI: 10.7256/2454-0714.2019.4.31797
URL: https://e-notabene.ru/itmag/article_31797.html
Читать статью
Аннотация: Целью исследования является подготовка к анализу слабоструктурированных исходных данных, их анализ, изучение влияния «загрязнения» данных на результаты регрессионного анализа. Задача структурирования данных, подготовки их к качественному анализу является уникальной задачей для каждого конкретного набора исходных данных и не может быть решена с помощью общего алгоритма, всегда будет иметь свои особенности. Рассмотрены проблемы, которые могут вызывать трудности при работе (анализе, обработке, поиске) со слабоструктурированными данными. Приведены примеры слабоструктурированных данных и структурированных данных, которые применяются в процедурах подготовки данных к анализу. Рассмотрены и описаны данные алгоритмы подготовки слабоструктурированных данных к анализу. Проведены процедуры очистки и анализа на наборе данных. Построены четыре регрессионных модели и произведено их сравнение. В результате были сформулированы следующие выводы: Исключение из анализа разного рода подозрительных наблюдений может резко сократить объем совокупности и привести к необоснованному снижению вариации. При этом, такой подход будет совершенно неприемлем, если в результате из анализа будут исключены важные объекты наблюдений и нарушена целостность совокупности. Качество построенной модели может ухудшаться при наличии аномальных значений, но может и улучшаться за их счет.
Abstract: The aim of the study is to prepare for the analysis of poorly structured source data, their analysis, the study of the influence of data "pollution" on the results of regression analysis. The task of structuring data, preparing them for a qualitative analysis is a unique task for each specific set of source data and cannot be solved using a general algorithm, it will always have its own characteristics. The problems that may cause difficulties when working (analysis, processing, search) with poorly structured data are considered. Examples of poorly structured data and structured data that are used in the preparation of data for analysis are given. These algorithms for preparing weakly structured data for analysis are considered and described. The cleaning and analysis procedures on the data set were carried out. Four regression models were constructed and compared. As a result, the following conclusions were formulated: Exclusion from the analysis of various kinds of suspicious observations can drastically reduce the size of the population and lead to an unreasonable decrease in variation. At the same time, such an approach would be completely unacceptable if, as a result, important objects of observation are excluded from the analysis and the integrity of the population is violated. The quality of the constructed model may deteriorate in the presence of abnormal values, but may also improve due to them.