Ипатов Ю.А., Тоцкий А.А. —
Исследование изображений динамически изменяющихся сцен в колориметрическом пространстве
// Кибернетика и программирование. – 2015. – № 4.
– С. 36 - 48.
DOI: 10.7256/2306-4196.2015.4.16158
URL: https://e-notabene.ru/kp/article_16158.html
Читать статью
Аннотация: Объектом исследования являются изображения динамически изменяющихся сцен искусственного происхождения на сложным и статистически неоднородном фоне. Предметом исследования является методы преобразования и стандартные подходы представления цветных цифровых изображений в трехмерном пространстве. В исследовании подробно рассматриваются практически все базовые колориметрические пространства, используя которые осуществляется построение кластеров объект/ фон. Формирование выборок осуществляется по методу обучения с учителем. Вычисление объективных показателей и сравнение субъективных характеристик позволяет определить оптимальное цветовое пространство для последующего синтеза алгоритма эффективной сегментации рассматриваемого класса изображений. При решении поставленных задач используются методы обработки изображений, теории вероятностей, математической логики, математической статистики, аппарата математического анализа, линейной алгебры, методы математического моделирования , теория алгоритмов, а также методы объектно-ориентированного программирования. Новизна исследования заключается в определении оптимального цветового пространства разделения кластеров объект/фон для заданного класса изображений ДИС. Визуальные характеристики рассмотренных способов представления колориметрических пространств подтверждаются, также объективно вычисленными показателями. Основными выводами проведенного исследования является то, что цветовое пространство RGB наилучшим образом подходит для синтезируемого алгоритма цветовой сегментации, поскольку представления объектов и фона образуют слабо пересекающиеся кластеры.
Abstract: The object of research is the image of a dynamically changing scene of artificial origin on the complex and statistically inhomogeneous background. The subject of research is the transformation methods and standard approaches of representation of color digital images in three dimensions. The study focuses on almost all basic colorimetric spaces used in building a clusters of object / background. Formation of the samples is carried out by the method of supervised learning. Calculation of objective indicators and comparison of subjective characteristics allows to determine the optimal color space for subsequent synthesis of algorithm for effective segmentation of this class of images. When solving the task authors used image processing techniques, probability theory, mathematical logic, mathematical statistics, the unit of mathematical analysis, linear algebra, mathematical modeling methods, theory of algorithms and methods of object-oriented programming. The novelty of the study is in determination of the optimal color space separation of clusters object / background for images of a given class. Visual characteristics of considered methods of representation of colorimetric spaces confirmed objective indicators of calculus. The main conclusions of the study is that RGB color space is the best choice for color segmentation algorithm synthesized as the representation of objects and the background form a weakly overlapping clusters.
Ипатов Ю.А., Кревецкий А.В. —
Методы обнаружения и пространственной локализации групп точечных объектов
// Кибернетика и программирование. – 2014. – № 6.
– С. 17 - 25.
DOI: 10.7256/2306-4196.2014.6.13642
URL: https://e-notabene.ru/kp/article_13642.html
Читать статью
Аннотация: Современные системы компьютерного зрения используют интеллектуальные алгоритмы, которые решают широкий класс задач от простого распознавания текста до сложных систем пространственного ориентирования. Одна из основных проблем, с которой сталкиваются разработчики таких систем – это выбор уникальных признаков, которые остаются инвариантными к различного рода преобразованиям. В статье приведен сравнительный анализ методов обнаружения и пространственной локализации групп точечных объектов. Рассмотренные методы сравниваются по производительности и эффективности при заданных размерностях. На сегодняшний день не существует универсальных подходов к определению таких характеристик, а их выбор зависит от контекста решаемой задачи и регистрируемых условий наблюдения. В качестве доминирующих признаков могут быть выбраны различного рода дескрипторы, такие как точки, линии, углы и геометрические примитивы. В работе выли исследованы алгоритмы обнаружения групп точечных объектов на основе минимального оставного дерева (MST) и с использованием модели ассоциированного сплошного образа (ACI).
Abstract: Modern systems of computer vision use intelligent algorithms that solve a wide class of problems from simple text recognition to complex systems of spatial orientation. One of the main problems for developers of such systems is in selection of unique attributes which remain invariant to various kinds of transformations. The article presents a comparative analysis of methods of detection and spatial localization of groups of point objects. The reviewed methods are compared by the performance and efficiency at specified dimensions. As of today there are no universal approaches to determine of such attributes, and its’ selection depends on the context of the problem being solved and on the registered conditions of observation. Various kinds of descriptors such as points, lines, angles and geometric primitives can be selected as dominating attributes. The authors study algorithms for detection of groups of point objects based on the minimum spanning tree (MST) and using a model of associated continuous image (ACI).
Ипатов Ю.А., Новиков П.С., Шургин А.И. —
Создание автоматизированной системы анализа изображений полимеразной цепной реакции
// Кибернетика и программирование. – 2013. – № 6.
– С. 1 - 5.
DOI: 10.7256/2306-4196.2013.6.10323
URL: https://e-notabene.ru/kp/article_10323.html
Читать статью
Аннотация: В статье рассматривается вопрос автоматической обработки и анализа изображений изображения гелей, получаемых в результате электрофореза образцов содержащих продукты полимеразной цепной реакции (ПЦР). Предложенный подход позволяет значительно повысить скорость проведения ДНК-анализа. Говорится, что одним из ресурсоемких и трудоемких этапов формирования первичных данных, является анализ цифровых изображений результатов химической реакции. В статье рассматривается разработка необходимых теоретических методов и практических реализаций автоматизированного анализа данных. Отмечается, что одним из ресурсоемких и трудоемких этапов формирования первичных данных, является анализ цифровых изображений результатов химической реакции. Предлагаемая разработка автоматизированной системы на базе методов распознавания и анализа цифровых изображений гелей, позволит минимизировать трудоемкие операции выполняемых человеком и повысит качество проводимых работ. Приводится алгоритм автоматического распознавания и назначения уникальных линий, определяющих области праймеров и продуктов ПЦР. Сравнительный анализ ручных методов и созданного подхода выигрывает по времени на полтора порядка. При этом учитывая показатели массовости и точности, повышают экономический эффект от использования данной разработки.
Abstract: The article discusses the question of automated processing and analysis of the gels images gathered as a result of electrophoresis of samples containing products of polymerase chain reaction (PCR). The proposed approach allows to significantly increase the speed of the DNA-analysis. The authors state that one of the resource and time-consuming stages of the forming of initial data is the analysis of digital images of the results of chemical reaction. The article reviews the development of necessary theoretical methods and practical implementations of automated image analysis. It is noted that one of the resource and time-consuming stages of the forming of initial data is the analysis of digital images of the results of chemical reaction. The presented development of an automated system based on the methods of pattern recognition and analysis of digital images of gels allows to minimize the time-consuming operation performed manually and to increase the quality of the result. The article brings the algorithm for automated recognition and assigning of unique lines that define the field of primers and products of PCR. Comparative analysis of the manual methods and created approach shows that the automated system is one and a half order of values faster. The massive usage and accuracy of this method also increases the economic benefits from the use of this product.
Ипатов Ю.А., Кревецкий А.В., Шмакин В.О. —
Проектирование распределенной наземной системы мониторинга за лесными пожарами
// Кибернетика и программирование. – 2013. – № 2.
– С. 20 - 28.
DOI: 10.7256/2306-4196.2013.2.8309
URL: https://e-notabene.ru/kp/article_8309.html
Читать статью
Аннотация: В статье предложен новый системный подход для мониторинга лесных пожаров на больших территориях. Создана архитектура комплекса, а также эффективные методы централизации и принятия решений. Научно-техническая задача состоит в создании системы распределенного видеонаблюдения для решения задачи раннего обнаружения лесных пожаров. В статье рассматриваются существующие подходы обнаружения пожаров: использование специализированных вышек, методы обнаружения пожаров с воздуха, с использованием летательных аппаратов разного класса, глобальный подход для мониторинга лесных пожаров использует систему спутникового мониторинга, системы видеомониторинга. Проектируемая система предназначена для обнаружения лесных пожаров и определения их пространственных координат, в масштабе реального времени. Для функционирования комплекса могут быть использованы вышки операторов связи и существующая инфокоммуникационная среда передачи данных. В работе проанализированы существующие подходы в области мониторинга лесных пожаров. Разработан новый системный подход для такого рода задач, который отличается высокими показателями и максимальной оперативностью понятия решений, при минимуме ресурсных затрат.
Abstract: In this paper we propose a new systematic approach to monitor forest fires over large areas. Established architecture of the complex, as well as effective methods of centralization and decision-making. Scientific and technical challenge is to create a system of distributed video surveillance to solve the problem of early detection of forest fires. This article discusses the existing fire detection approaches: the use of specialized towers, fire detection methods from the air, with the use of aircraft of various classes, a holistic approach to forest fire monitoring system uses satellite monitoring, video monitoring system. The described system is designed for the detection of forest fires and the determination of their spatial coordinates in real time. For the operation of the software complex towers and existing infocommunication data transmission medium can be used. This article analyzes existing approaches in the field of forest fire monitoring. A new systematic approach to problems of this kind, which is characterized by high performance and maximum efficiency of the concept solutions with minimal resource costs.